首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
P D Aplan  K Nakahara  S H Orkin    I R Kirsch 《The EMBO journal》1992,11(11):4073-4081
  相似文献   

14.
15.
GATA-1 is essential for the generation of the erythroid, megakaryocytic, eosinophilic and mast cell lineages. It acts as an activator and repressor of different target genes, for example, in erythroid cells it represses cell proliferation and early hematopoietic genes while activating erythroid genes, yet it is not clear how both of these functions are mediated. Using a biotinylation tagging/proteomics approach in erythroid cells, we describe distinct GATA-1 interactions with the essential hematopoietic factor Gfi-1b, the repressive MeCP1 complex and the chromatin remodeling ACF/WCRF complex, in addition to the known GATA-1/FOG-1 and GATA-1/TAL-1 complexes. Importantly, we show that FOG-1 mediates GATA-1 interactions with the MeCP1 complex, thus providing an explanation for the overlapping functions of these two factors in erythropoiesis. We also show that subsets of GATA-1 gene targets are bound in vivo by distinct complexes, thus linking specific GATA-1 partners to distinct aspects of its functions. Based on these findings, we suggest a model for the different roles of GATA-1 in erythroid differentiation.  相似文献   

16.
17.
18.
19.
Optimal production of red cells in vivo requires collaboration between c-Kit, erythropoietin receptor (Epo-R), and GATA-1. However, the mechanism(s) of collaboration remain unclear. Utilizing an embryonic stem cell-derived erythroid progenitor cell line from mice deficient in GATA-1, we have examined the role of c-Kit and Epo-R in erythroid cell proliferation, survival, and differentiation. In the absence of GATA-1, we demonstrate an essential role for c-Kit in survival and proliferation of erythroid progenitors via the regulation of Bcl-2 expression. In addition, we demonstrate that Epo-R and Stat5 are regulated by a second, novel mechanism. We demonstrate that c-Kit stimulation by stem cell factor is essential for the maintenance of Epo-R and Stat5 protein expression, which results in significantly enhanced Bcl-x(L) induction and survival of erythroid progenitors in response to Epo stimulation. Restoration of GATA-1 function results in terminal erythroid maturation and up-regulation of Epo-R and Bcl-x(L) expression, leading also to significantly enhanced survival of terminally differentiating erythroid progenitors in the presence of only Epo. These results demonstrate that c-Kit and Epo-R have unique role(s) during distinct phases of erythroid maturation, and both stem cell factor and Epo contribute to the regulation of the Epo-R-Stat5-Bcl-x(L) pathway to ensure optimal survival, proliferation, and differentiation of erythroid progenitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号