首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to understand the functional significance of the transmembrane domain of TrwB, an integral membrane protein involved in bacterial conjugation, the protein was purified in the native, and also as a truncated soluble form (TrwBΔN70). The intact protein (TrwB) binds preferentially purine over pyrimidine nucleotides, NTPs over NDPs, and ribo- over deoxyribonucleotides. In contrast, TrwBΔN70 binds uniformly all tested nucleotides. The transmembrane domain has the general effect of making the nucleotide binding site(s) less accessible, but more selective. This is in contrast to other membrane proteins in which most of the protein mass, including the catalytic domain, is outside the membrane, but whose activity is not modified by the presence or absence of the transmembrane segment.  相似文献   

2.
The predicted Exigobacterium sibiricum bacterirhodopsin gene was amplified from an ancient Siberian permafrost sample. The protein bacteriorhodopsin from Exiguobacterium sibiricum (ESR) encoded by this gene was expressed in Escherichia coli membrane. ESR bound all-trans-retinal and displayed an absorbance maximum at 534 nm without dark adaptation. The ESR photocycle is characterized by fast formation of an M intermediate and the presence of a significant amount of an O intermediate. Proteoliposomes with ESR incorporated transport protons in an outward direction leading to medium acidification. Proton uptake at the cytoplasmic surface of these organelles precedes proton release and coincides with M decay/O rise of the ESR.  相似文献   

3.
Cell-free translation is one potential approach to the production of functional transmembrane proteins. We have now examined various detergents as supplements to a wheat-germ cell-free system in order to optimize the production and subsequent purification of a functional model transmembrane protein, bacteriorhodopsin. We found that Fos-choline and CHAPS detergents counteracted each other’s inhibitory effects on cell-free translation activity and thereby allowed the efficient production and subsequent purification of functional bacteriorhodopsin in high yield.  相似文献   

4.
We have recently developed monolayer purification as a rapid and convenient technique to produce specimens of His-tagged proteins or macromolecular complexes for single-particle electron microscopy (EM) without biochemical purification. Here, we introduce the Affinity Grid, a pre-fabricated EM grid featuring a dried lipid monolayer that contains Ni-NTA lipids (lipids functionalized with a nickel-nitrilotriacetic acid group). The Affinity Grid, which can be stored for several months under ambient conditions, further simplifies and extends the use of monolayer purification. After characterizing the Affinity Grid, we used it to isolate, within minutes, ribosomal complexes from Escherichia coli cell extracts containing His-tagged rpl3, the human homolog of the E. coli 50 S subunit rplC. Ribosomal complexes with or without associated mRNA could be prepared depending on the way the sample was applied to the Affinity Grid . Vitrified Affinity Grid specimens could be used to calculate three-dimensional reconstructions of the 50 S ribosomal subunit as well as the 70 S ribosome and 30 S ribosomal subunit from images of the same sample. We established that Affinity Grids are stable for some time in the presence of glycerol and detergents, which allowed us to isolate His-tagged aquaporin-9 (AQP9) from detergent-solubilized membrane fractions of Sf9 insect cells. The Affinity Grid can thus be used to prepare single-particle EM specimens of soluble complexes and membrane proteins.  相似文献   

5.
Okuda S  Watanabe S  Tokuda H 《FEBS letters》2008,582(15):2247-2251
The structures of a lipoprotein carrier, LolA, and a lipoprotein receptor, LolB, are similar except for an extra C-terminal loop containing a 3(10) helix and beta-strand 12 in LolA. Lipoprotein release was significantly reduced when beta-12 was deleted. Deletion of the 3(10) helix also inhibited the lipoprotein release. Furthermore, lipoproteins were non-specifically localized to membranes when LolA lacked the 3(10) helix. Thus, the membrane localization of lipoproteins with the LolA derivative lacking the 3(10) helix was independent of LolB whereas LolB was essential for the outer membrane localization of lipoproteins with the wild-type LolA.  相似文献   

6.
DGalactofuranose is a widespread component of cell wall polysaccharides in bacteria, protozoa and fungi, but is totally absent in mammals. Importantly, galactofuranose is a key constituent of major cell envelope polysaccharides in pathogenic mycobacteria. In this respect, galactofuranose-based glycoconjugates are interesting target molecules for drug design. O-Glycosidases and notably beta-D-galactofuranosidases could be useful tools for the chemoenzymatic synthesis of galactofuranosides, but to date no studies of this type have been reported. Here we report the use of a GH 51 alpha-l-arabinofuranosidase for the synthesis of beta-D-galactofuranosides. We have demonstrated that this enzyme can catalyse both the autocondensation of p-nitrophenyl-beta-D-galactofuranoside and the transgalactofuranosylation of benzyl alpha-D-xylopyranoside, forming p-nitrophenyl beta-D-galactofuranosyl-(1-->2)-beta-D-galactofuranoside and benzyl beta-D-galactofuranosyl-(1-->2)-alpha-D-xylopyranoside, respectively. Both reactions were very regiospecific and the reaction involving benzyl alpha-D-xylopyranoside afforded very high yields (74.8%) of the major product. To our knowledge, this demonstration of chemoenzymatic synthesis of galactofuranosides constitutes the very first use of an O-glycosidase for the synthesis of galactofuranosides.  相似文献   

7.
The lactose (lac) repressor is an allosteric protein that can respond to environmental changes. Mutations introduced into the DNA binding domain and the effector binding pocket affect the repressor's ability to respond to its environment. We have demonstrated how the observed phenotype is a consequence of altering the thermodynamic equilibrium constants. We discuss mutant repressors, which (1) show tighter repression; (2) induce with a previously noninducing species, orthonitrophenyl-β-d-galactoside; and (3) transform an inducible switch to one that is corepressed. The ability of point mutations to change multiple thermodynamic constants, and hence drastically alter the repressor's phenotype, shows how allosteric proteins can perform a wide array of similar yet distinct functions such as that exhibited in the Lac/Gal family of bacterial repressors.  相似文献   

8.
The synthesis of glucooligosaccharides from α-D-glucose-1-phosphate by transglucosylation with sucrose phosphorylase from Leuconostoc mesenteroides was studied using the purified enzyme and high performance liquid chromatography. The enzyme had a rather broad acceptor specificity and transferred glucosyl residues to various acceptors such as sugars and sugar alcohols. Especially, 5-carbon sugar alcohols (pentitols), D- and L-arabitol were acceptors equal to D-fructose, which was known as a good acceptor. The transfer product of xylitol formed by the enzyme was investigated. The structure of the product was found to be 4-O-α-D-glucopyranosyl-xylitol (G-X) by acid hydrolysis and 13C-nuclear magnetic resonance analysis. G-X is a probable candidate for a preventive for dental caries because it reduced the synthesis of water-insoluble glucan by Streptococcus mutans and kept a neutral pH in the cell suspension.  相似文献   

9.
A quantitative evaluation of 20 second-generation carbohydrate force fields was carried out using ab initio and density functional methods. Geometry-optimized structures (B3LYP/6-31G(d)) and relative energies using augmented correlation consistent basis sets were calculated in gas phase for monosaccharide carbohydrate benchmark systems. Selected results are: (i). The interaction energy of the alpha-d-glucopyranose.H(2)O heterodimer is estimated to be 4.9 kcal/mol, using a composite method including terms at highly correlated (CCSD(T)) level. Most molecular mechanics force fields are in error in this respect; (ii). The (3)E envelope (south) pseudorotational conformer of methyl 5-deoxy-beta-d-xylofuranoside is 0.66 kcal/mol more stable than the (3)E envelope (north) conformer and the alpha-anomer of methyl d-glucopyranoside is 0.82 kcal/mol more stable than the beta-anomer; (iii). The relative energies of the (gg, gt and tg) rotamers of methyl alpha-d-glucopyranoside and methyl alpha-d-galactopyranoside are (0.13, 0.00, 0.15) and (0.64, 0.00, 0.77) kcal/mol, respectively. The results of the quantum mechanical calculations are compared with the results of calculations using the 20 second-generation carbohydrate force fields. No single force field is consistently better than the others for all the test cases. A statistical assessment of the performance of the force fields indicates that CHEAT(95), CFF, certain versions of Amber and of MM3 have the best overall performance, for these gas phase monosaccharide systems.  相似文献   

10.
Fe-only hydrogenases contain a di-iron active site complex, in which the two Fe atoms have carbon monoxide and cyanide ligands and are linked together by a putative di(thiomethyl)amine molecule. We have cloned, purified and characterized the HydE and HydG proteins, thought to be involved in the biosynthesis of this peculiar metal site, from the thermophilic organism Thermotoga maritima. The HydE protein anaerobically reconstituted with iron and sulfide binds two [4Fe-4S] clusters, as characterized by UV and EPR spectroscopy. The HydG protein binds one [4Fe-4S] cluster, and probably an additional one. Both enzymes are able to reductively cleave S-adenosylmethionine (SAM) when reduced by dithionite, confirming that they are Radical-SAM enzymes.  相似文献   

11.
Most commonly used expression systems in bacteria are based on the Escherichia coli lac promoter. Furthermore, lac operon elements are used today in systems and synthetic biology. In the majority of the cases the gratuitous inducers IPTG or TMG are used. Here we report a systematic comparison of lac promoter induction by TMG and IPTG which focuses on the aspects inducer uptake, population heterogeneity and a potential influence of the transacetylase, LacA. We provide induction curves in E. coli LJ110 and in isogenic lacY and lacA mutant strains and we show that both inducers are substrates of the lactose permease at low inducer concentrations but can also enter cells independently of lactose permease if present at higher concentrations. Using a gfp reporter strain we compared TMG and IPTG induction at single cell level and showed that bimodal induction with IPTG occurred at approximately ten-fold lower concentrations than with TMG. Furthermore, we observed that lac operon induction is influenced by the transacetylase, LacA. By comparing two Plac-gfp reporter strains with and without a lacA deletion we could show that in the lacA+ strain the fluorescence level decreased after few hours while the fluorescence further increased in the lacA strain. The results indicate that through the activity of LacA the IPTG concentration can be reduced below an inducing threshold concentration—an influence that should be considered if low inducer amounts are used.  相似文献   

12.
In this study, interactions of selected monosaccharides with the Pseudomonas aeruginosa Lectin II (PA-IIL) are analyzed in detail. An interesting feature of the PA-IIL binding is that the monosaccharide is interacting via two calcium ions and the binding is unusually strong for protein-saccharide interaction. We have used Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) and normal mode analysis to calculate the free energy of binding. The impact of intramolecular hydrogen bond network for the lectin/monosaccharide interaction is also analyzed.  相似文献   

13.
Sodium proton antiporters are ubiquitous membrane proteins. Their importance for cell viability is the result of their role in homeostasis of intracellular pH, cellular Na+ content and cell volume. Recently, the first structure of this family of secondary transporters, namely of NhaA from Escherichia coli, revealed a novel fold and elucidated the molecular basis for the mechanism of transport and its regulation by pH. Here, we describe the key steps for the structure determination of NhaA, an iterative process of improving protein quality as well as crystallization conditions. Protein quality was optimized by shortening the purification to a single step and by changing the expression host. The major steps for crystal improvement were the exchange of the detergent during protein purification from the beta- to the alpha-anomer of DDM, the addition of OG to the crystallization set ups, and the growth of the crystals under conditions suitable for cryo-temperatures. Unexpectedly, the dimeric association of the transporter in the 3D crystal lattice is non-physiological. A comparison of the X-ray structure with the electron density map from cryo-electron microscopy of 2D crystals demonstrates that the NhaA helix packing in the 3D crystal is identical with the one in the lipid environment. Thus, the antiporter is in a native conformation in the 3D crystals.  相似文献   

14.
The synthesis of a series of alkyl (having from C6 to C20 aglycones), cyclohexyl, and cyclohexylalkyl α-d-mannopyranosides, 6-deoxygenated analogs, thioglycosides, and sulfones derived thereof, is reported. Here, under the in vitro assay conditions used, none of the 15 tested compounds acted as an inhibitor of the mannose transfer catalyzed by the enzymes present in mycobacterial membrane and cell wall fractions. Mannopyranosides comprising shorter aliphatic, up to 8 carbon atoms long linear, or cyclic aglycone served as the acceptor substrates in the mycobacterial mannosyltransferase reaction. The thioglycosides exhibited similar behavior, in contrast to the sulfones, which were essentially not recognized by the mycobacterial enzymes. 6-Deoxygenated glycosides were not processed by the enzymes, suggesting that the mannose transfer occurs at position 6 of the acceptors.  相似文献   

15.
The β-d-glucosidase (EC. 3.2.1.21) activity of Bifidobacterium breve 203 was increased by acclimation with cellobiose, and the enzyme was purified to homogeneity from cell-free extracts of an acclimatized strain of B. breve clb, by ammonium sulfate fractionation and column chromatographies of anion-exchange, gel filtration, Gigapaite, and hydrophobic interaction. This enzyme had not only β- d-glucosidase activity but also β- d-fucosidase activity, which is specific to Bifidobacteria in intestinal flora. The molecular weight of the purified enzyme was estimated to be 47,000–48,000 and the enzyme was assumed to be a monomeric protein. The optimum pH and temperature of the enzyme were around 5.5 and 45°C, respectively. The enzyme was stable up to 40°C and between pH 5 and 8. The isoelectric point of the enzyme was 4.3 and the Km values for p-nitrophenyl-β-d-glucoside and p-nitrophenyl-β-d-fucoside were 1.3mm and 0.7 mm, respectively. This enzyme had also transferase activity for the β-d-fucosyl group but not for the β-d-glucosyl group. The N-terminal amino acid sequence of this enzyme was similar to those of β-d-glucosidase from other bacteria, actinomycetes, and plants.  相似文献   

16.
The anomeric selectivity of the ester formation between d-glucopyranose and gallic acid was investigated under a variety of conditions. A new protocol was established that allows performing the reaction under conditions where mutarotation is very slow. Highly α- or β-selective transformations are possible when starting with α- or β-d-glucopyranose, respectively. Due to the kinetic anomeric effect, a high α-selectivity is more difficult to achieve than a high β-selectivity. The new methodology presented in this article was compared with established procedures for the synthesis of gallotannins. In addition to the advantages of a high yield and an easy purification protocol, the new procedure uniquely allowed for a highly selective synthesis of α-products.  相似文献   

17.
Madan V  García Mde J  Sanz MA  Carrasco L 《FEBS letters》2005,579(17):3607-3612
The viroporin activity of the E protein from murine hepatitis virus (MHV), a member of the coronaviruses, was analyzed. Viroporins are a growing family of viral proteins able to enhance membrane permeability, promoting virus budding. Initially, the MHV E gene was inducibly expressed in Escherichia coli cells, leading to the arrest of bacterial growth, cell lysis and permeabilization to different compounds. Thus, exit of labeled nucleotides from E. coli cells to the cytoplasm was apparent upon expression of MHV E. In addition, enhanced entry of the antibiotic hygromycin B occurred at levels comparable to those observed with the viroporin 6K from Sindbis virus. Mammalian cells are also readily permeabilized by the expression of MHV E protein. Finally, brefeldin A powerfully blocks the viroporin activity of the E protein in BHK cells, suggesting that an intact vesicular system is necessary for this coronavirus to permeabilize mammalian cells.  相似文献   

18.
Membrane lipids are increasingly being recognised as active participants in biological events. The precise roles that individual lipids or global properties of the lipid bilayer play in the folding of membrane proteins remain to be elucidated, Here, we find a significant effect of phosphatidylglycerol (PG) on the folding of a trimeric α helical membrane protein from Escherichia coli diacylglycerol kinase. Both the rate and the yield of folding are increased by increasing the amount of PG in lipid vesicles. Moreover, there is a direct correlation between the increase in yield and the increase in rate; thus, folding becomes more efficient in terms of speed and productivity. This effect of PG seems to be a specific requirement for this lipid, rather than a charge effect. We also find an effect of single-chain lyso lipids in decreasing the rate and yield of folding. We compare this to our previous work in which lyso lipids increased the rate and yield of another membrane protein, bacteriorhodopsin. The contrasting effect of lyso lipids on the two proteins can be explained by the different folding reaction mechanisms and key folding steps involved. Our findings provide information on the lipid determinants of membrane protein folding.  相似文献   

19.
An extract from 50 kinds of fruits and vegetables was fermented to produce a new beverage. Natural fermentation of the extract was carried out mainly by lactic acid bacteria (Leuconostoc spp.) and yeast (Zygosaccharomyces spp. and Pichia spp.). Two new saccharides were found in this fermented beverage. The saccharides were isolated using carbon-Celite column chromatography and preparative high performance liquid chromatography. Gas liquid chromatography analysis of methylated derivatives as well as MALDI-TOF MS and NMR measurements were used for structural confirmation. The (1)H and (13)C NMR signals of each saccharide were assigned using 2D-NMR including COSY, HSQC, HSQC-TOCSY, CH(2)-HSQC-TOCSY, and CT-HMBC experiments. The saccharides were identified as beta-D-fructopyranosyl-(2-->6)-beta-D-glucopyranosyl-(1-->3)-D-glucopyranose and beta-D-fructopyranosyl-(2-->6)-[beta-D-glucopyranosyl-(1-->3)]-D-glucopyranose.  相似文献   

20.
The 3D structures or dynamic feature of fully hydrated membrane proteins are very important at ambient temperature, in relation to understanding their biological activities, although their data, especially from the flexible portions such as surface regions, are unavailable from X-ray diffraction or cryoelectron microscope at low temperature. In contrast, high-resolution solid-state NMR spectroscopy has proved to be a very convenient alternative means to be able to reveal their dynamic structures. To clarify this problem, we describe here how we are able to reveal such structures and dynamic features, based on intrinsic probes from high-resolution solid-state NMR studies on bacteriorhodopsin (bR) as a typical membrane protein in 2D crystal, regenerated preparation in lipid bilayer and detergents. It turned out that their dynamic features are substantially altered upon their environments where bR is present. We further review NMR applications to study structure and dynamics of a variety of membrane proteins, including sensory rhodopsin, rhodopsin, photoreaction centers, diacylglycerol kinases, etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号