首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The cross-linking of polysaccharides to assemble new cell wall in fungi requires mechanisms by which a preexisting linkage is broken for each new one made, to allow for the absence of free energy sources outside the plasma membrane. Previous work showed that Crh1p and Crh2p, putative transglycosylases, are required for the linkage of chitin to beta(1-3)glucose branches of beta(1-6)glucan in the cell wall of budding yeast. To explore the linking reaction in vivo and in vitro, we used fluorescent sulforhodamine-linked laminari-oligosaccharides as artificial chitin acceptors. In vivo, fluorescence was detected in bud scars and at a lower level in the cell contour, both being dependent on the CRH genes. The linking reaction was also shown in digitonin-permeabilized cells, with UDP-N-acetylglucosamine as the substrate for nascent chitin production. Both the nucleotide and the Crh proteins were required here. A gas1 mutant that overexpresses Crh1p showed very high fluorescence both in intact and permeabilized cells. In the latter, fluorescence was still incorporated in patches in the absence of UDP-GlcNAc. Isolated cell walls of this strain, when incubated with sulforhodamine-oligosaccharide, also showed Crhp-dependent fluorescence in patches, which were identified as bud scars. In all three systems, binding of the fluorescent material to chitin was verified by chitinase digestion. Moreover, the cell wall reaction was inhibited by chitooligosaccharides. These results demonstrate that the Crh proteins act by transferring chitin chains to beta(1-6)glucan, with a newly observed high activity in the bud scar. The importance of transglycosylation for cell wall assembly is thus firmly established.  相似文献   

2.
In budding yeast, chitin is found in three locations: at the primary septum, largely in free form, at the mother-bud neck, partially linked to beta(1-3)glucan, and in the lateral wall, attached in part to beta(1-6)glucan. By using a recently developed strategy for the study of cell wall cross-links, we have found that chitin linked to beta(1-6)glucan is diminished in mutants of the CRH1 or the CRH2/UTR2 gene and completely absent in a double mutant. This indicates that Crh1p and Crh2p, homologues of glycosyltransferases, ferry chitin chains from chitin synthase III to beta(1-6)glucan. Deletion of CRH1 and/or CRH2 aggravated the defects of fks1Delta and gas1Delta mutants, which are impaired in cell wall synthesis. A temperature shift from 30 degrees C to 38 degrees C increased the proportion of chitin attached to beta(1-6)glucan. The expression of CRH1, but not that of CRH2, was also higher at 38 degrees C in a manner dependent on the cell integrity pathway. Furthermore, the localization of both Crh1p and Crh2p at the cell cortex, the area where the chitin-beta(1-6)glucan complex is found, was greatly enhanced at 38 degrees C. Crh1p and Crh2p are the first proteins directly implicated in the formation of cross-links between cell wall components in fungi.  相似文献   

3.
Enrico Cabib 《Eukaryotic cell》2009,8(11):1626-1636
Previous work, using solubilization of yeast cell walls by carboxymethylation, before or after digestion with β(1-3)- or β(1-6)glucanase, followed by size chromatography, showed that the transglycosylases Crh1p and Crh2p/Utr2p were redundantly required for the attachment of chitin to β(1-6)glucan. With this technique, crh1Δ crh2Δ mutants still appeared to contain a substantial percentage of chitin linked to β(1-3)glucan. Two novel procedures have now been developed for the analysis of polysaccharide cross-links in the cell wall. One is based on the affinity of curdlan, a β(1-3)glucan, for β(1-3)glucan chains in carboxymethylated cell walls. The other consists of in situ deacetylation of cell wall chitin, generating chitosan, which can be extracted with acetic acid, either directly (free chitosan) or after digestion with different glucanases (bound chitosan). Both methodologies indicated that all of the chitin in crh1Δ crh2Δ strains is free. Reexamination of the previously used procedure revealed that the β(1-3)glucanase preparation used (zymolyase) is contaminated with a small amount of endochitinase, which caused erroneous results with the double mutant. After removing the chitinase from the zymolyase, all three procedures gave coincident results. Therefore, Crh1p and Crh2p catalyze the transfer of chitin to both β(1-3)- and β(1-6)glucan, and the biosynthetic mechanism for all chitin cross-links in the cell wall has been established.The fungal cell wall protects the cell against internal turgor pressure and external mechanical injury. To fulfill these functions, it must be endowed with a resilient structure. Presumably, the cell wall strength is largely due to the cross-links that bind together its components, mainly polysaccharides, giving rise to a tightly knit mesh (6, 11-13). Interestingly, the cross-links must be created outside the plasma membrane, because most of the polysaccharides are extruded as they are synthesized at the membrane; therefore, they do not exist inside the cell. This posits a thermodynamic problem, because there are no obvious sources of energy in the periplasmic space. About 20 years ago we proposed that the free energy may come from existing bonds in the polysaccharide chains and that the new cross-links may be originated by transglycosylation, thus creating a new linkage for each one that is broken (5).Ascertaining the mechanism of cross-link formation seemed a worthwhile endeavor, both because of the theoretical implications and because the cell wall is a proven target for antifungal compounds; therefore, more knowledge about its synthesis can be of practical interest. For this type of investigation to proceed, it was necessary to devise some method for the quantitative analysis of cell wall cross-links. We developed such a procedure for the evaluation of the proportion of cell wall chitin that is free or bound to β(1-3)- or β(1-6)glucan (4). In this methodology, chitin was specifically labeled in vivo with [14C]glucosamine; cell walls were isolated, and their proteins were eliminated by alkali treatment. The insoluble residue was solubilized by carboxymethylation and analyzed by size fractionation chromatography. By treating the cell walls with different glucanases before carboxymethylation and comparing the chromatographic profiles, we were able to determine the amount of chitin bound to the different glucans, as well as the fraction that was free (4). Armed with this procedure, we could now analyze the cell wall of different mutants that appeared to be candidates for cross-links defects. In this way we found that the two putative transglycosylases Crh1p and Crh2p were redundantly required for the formation of the chitin-β(1-6)glucan linkage. A double mutant crh1Δ crh2Δ had no chitin attached to β(1-6)glucan, although it still contained apparently normal amounts of chitin-β(1-3)glucan complex (7). Further work supported the notion that Crh1p and Crh2p function as transglycosylases, transferring portions of chitin chains to glucan (8). This confirmed our earlier hypothesis.With the initial intention of finding easier and faster methods, I devised two novel procedures for cell wall analysis. One is based on the affinity between β(1-3)glucan chains, the other on the conversion of chitin in situ into its deacetylated product, chitosan, followed by extraction of the chitosan with acetic acid before or after treatment with specific glucanases. With a wild-type strain, both procedures gave similar results to those of the carboxymethylation-chromatography technique. However, in the double mutant crh1Δ crh2Δ all of the chitin appeared to be free with both new methods. Further investigation showed that the older procedure led to erroneous results for the double mutant, because of the presence of a small amount of chitinase in the β(1-3)glucanase preparation used. After reconciling the results, I conclude that Crh1p and Crh2p are necessary for the formation of cross-links between chitin and either β(1-6) or β(1-3)glucan.  相似文献   

4.
5.
The ability of a lytic beta-glucanase of Arthrobacter GJM-1 to dissolve cell walls of Saccharomyces cerevisiae with exception of the chitin-containing fraction was employed for the isolation of chitin-rich residues of the cell walls of synchronously growing populations of virgin cells. Electron microscopical examination of such wall residues isolated from cells at various stages of the budding cycle showed that the first phase of chitin deposition in the wall corresponds to the formation of an annular structure found as a part of the bud scar after cell division. The annular chitin-rich structure could not be isolated at cell cycle stages preceding the bud emergence and at earliest stages of bud development. The observations confirmed that the annular structure (chitin ring) formed during bud growth represents a major part of total chitin present in the bud scar after septum closure.  相似文献   

6.
In Candida albicans UTR2 (CSF4), CRH11, and CRH12 are members of a gene family (the CRH family) that encode glycosylphosphatidylinositol-dependent cell wall proteins with putative transglycosidase activity. Deletion of genes of this family resulted in additive sensitivity to compounds interfering with normal cell wall formation (Congo red, calcofluor white, SDS, and high Ca(2+) concentrations), suggesting that these genes contribute to cell wall organization. A triple mutant lacking UTR2, CRH11, and CRH12 produced a defective cell wall, as inferred from increased sensitivity to cell wall-degrading enzymes, decreased ability of protoplasts to regenerate a new wall, constitutive activation of Mkc1p, the mitogen-activated protein kinase of the cell wall integrity pathway, and an increased chitin content of the cell wall. Importantly, this was accompanied by a decrease in alkali-insoluble 1,3-beta-glucan but not total glucan content, suggesting that formation of the linkage between 1,3-beta-glucan and chitin might be affected. In support of this idea, localization of a Utr2p-GFP fusion protein largely coincided with areas of chitin incorporation in C. albicans.As UTR2 and CRH11 expression is regulated by calcineurin, a serine/threonine protein phosphatase involved in tolerance to antifungal drugs, cell wall morphogenesis, and virulence, this points to a possible relationship between calcineurin and the CRH family. Deletion of UTR2, CRH11, and CRH12 resulted in only a partial overlap with calcineurin-dependent phenotypes, suggesting that calcineurin has additional targets. Interestingly, cells deleted for UTR2, CRH11, and CRH12 were, like a calcineurin mutant, avirulent in a mouse model of systemic infection but retained the capacity to colonize target organs (kidneys) as the wild type. In conclusion, this work establishes the role of UTR2, CRH11, and CRH12 in cell wall organization and integrity.  相似文献   

7.
Gas1p is a glucan-elongase that plays a crucial role in yeast morphogenesis. It is predominantly anchored to the plasma membrane through a glycosylphosphatidylinositol, but a fraction was also found covalently bound to the cell wall. We have used fusions with the green fluorescent protein or red fluorescent protein (RFP) to determine its localization. Gas1p was present in microdomains of the plasma membrane, at the mother-bud neck and in the bud scars. By exploiting the instability of RFP-Gas1p, we identified mobile and immobile pools of Gas1p. Moreover, in chs3Δ cells the chitin ring and the cross-linked Gas1p were missing, but this unveiled an additional unexpected localization of Gas1p along the septum line in cells at cytokinesis. Localization of Gas1p was also perturbed in a chs2Δ mutant where a remedial septum is produced. Phenotypic analysis of cells expressing a fusion of Gas1p to a transmembrane domain unmasked new roles of the cell wall-bound Gas1p in the maintenance of the bud neck size and in cell separation. We present evidence that Crh1p and Crh2p are required for tethering Gas1p to the chitin ring and bud scar. These results reveal a new mechanism of protein immobilization at specific sites of the cell envelope.  相似文献   

8.
9.
10.
Carbon catabolite repression (CCR) of Bacillus subtilis catabolic genes is mediated by CcpA and in part by P-Ser-HPr. For certain operons, Crh, an HPr-like protein, is also implicated in CCR. In this study we demonstrated that in ptsH1 crh1 and hprK mutants, expression of the lev operon was completely relieved from CCR and that both P-Ser-HPr and P-Ser-Crh stimulated the binding of CcpA to the cre sequence of the lev operon.  相似文献   

11.
Peripheral corticotropin-releasing hormone (CRH) is thought to have proinflammatory effects. We used the model of experimental autoimmune encephalomyelitis (EAE) to study the role of CRH in an immune-mediated disease. We showed that CRH-deficient mice are resistant to EAE, with a decrease in clinical score as well as decreased cellular infiltration in the CNS. Furthermore, Ag-specific responses of primed T cells as well as anti-CD3/anti-CD28 TCR costimulation were decreased in crh(-/-) mice with decreased production of Th1 cytokines and increased production of Th2 cytokines. Wild-type mice treated in vivo with a CRH antagonist showed a decrease in IFN-gamma production by primed T cells in vitro. This effect of CRH is independent of its ability to increase corticosterone production, because adrenalectomized wild-type mice had similar disease course and severity as control mice. We found that IkappaBalpha phosphorylation induced by TCR cross-linking was decreased in crh(-/-) T cells. We conclude that peripheral CRH exerts a proinflammatory effect in EAE with a selective increase in Th1-type responses. These findings have implications for the treatment of Th1-mediated diseases such as multiple sclerosis.  相似文献   

12.
In Bacillus subtilis, CcpA-dependent carbon catabolite repression (CCR) mediated at several cis-acting carbon repression elements (cre) requires the seryl-phosphorylated form of both the HPr (ptsH) and Crh (crh) proteins. During growth in minimal medium, the ptsH1 mutation, which prevents seryl phosphorylation of HPr, partially relieves CCR of several genes regulated by CCR. Examination of the CCR of the histidine utilization (hut) enzymes in cells grown in minimal medium showed that neither the ptsH1 nor the crh mutation individually had any affect on hut CCR but that hut CCR was abolished in a ptsH1 crh double mutant. In contrast, the ptsH1 mutation completely relieved hut CCR in cells grown in Luria-Bertani medium. The ptsH1 crh double mutant exhibited several growth defects in glucose minimal medium, including reduced rates of growth and growth inhibition by high levels of glycerol or histidine. CCR is partially relieved in B. subtilis mutants which synthesize low levels of active glutamine synthetase (glnA). In addition, these glnA mutants grow more slowly than wild-type cells in glucose minimal medium. The defects in growth and CCR seen in these mutants are suppressed by mutational inactivation of TnrA, a global nitrogen regulatory protein. The inappropriate expression of TnrA-regulated genes in this class of glnA mutants may deplete intracellular pools of carbon metabolites and thereby result in the reduction of the growth rate and partial relief of CCR.  相似文献   

13.
The cell wall of yeast consists of an internal skeletal layer and an external layer of glycoproteins covalently linked to the stress-bearing polysaccharides. The cell wall protein (CWP) population consists of over 20 different proteins, and may vary in composition. We present two complementary methods for quantifying CWPs, based on isobaric tagging and tandem MS: (1) absolute quantitation of individual CWPs, allowing estimation of surface densities; and (2) relative quantitation of CWPs, allowing monitoring of the dynamics of the CWP population. For absolute quantitation, we selected a representative group of five proteins (Cwp1p, Crh1p, Scw4p, Gas1p, and Ecm33p), which had 67 x 10(3), 44 x 10(3), 38 x 10(3), 11 x 10(3) and 6.5 x 10(3) of wall-bound copies per cell, respectively. As Cwp1p is predominantly incorporated in the birth scar, this corresponds to a protein density of c. 22 x 10(3) copies microm(-2). For relative quantitation, we compared wild-type cells to gas1Delta cells, in which the cell wall integrity pathway is constitutively activated. The levels of Crh1p, Crh2p, Ecm33p, Gas5p, Pst1p and Pir3p increased about three- to fivefold, whereas the level of Scw4p was significantly decreased. We propose that our methods are widely applicable to other fungi.  相似文献   

14.
The effects of pH on the budding cycle of a respiration-deficient mutant of Saccharomyces cerevisiae were investigation by monitoring the time course of bud development on single cells. The volume of each bud was measured at various time intervals between the inception of its development and inception of development of the next bud on the mother cell. A previous report that the budding cycle consisted of two phases (a rapid-growth phase and a slow-growth phase) was confirmed. With increase in pH from 3.8 to 6.0 the budding cycle shortened as a result of both increase in rate of the rapid-growth phase and decrease in the duration of the slow-growth phase. Although further increase in pH to 7.4 further increased the rate of the rapid-growth phase, the budding cycle lengthened as a result of an increase in time lag and increase in duration of the slow-growth phase. The growth rate, in terms of bud volume, conformed with the expression: (1/V)(dV/dτ) = ξ exp(–V/η), where the values of ξ and η were dependent on pH. The cell volume distribution in a batch culture was compared with the cell volume distribution calculated from the growth curve of a single bud. Similarities in the curves suggested that the growth pattern of a whole culture reflected the growth pattern of a single cell.  相似文献   

15.
Laboratory strains of Saccharomyces cerevisiae are dimorphic; in response to nitrogen starvation they switch from a yeast form (YF) to a filamentous pseudohyphal (PH) form. Time-lapse video microscopy of dividing cells reveals that YF and PH cells differ in their cell cycles and budding polarity. The YF cell cycle is controlled at the G1/S transition by the cell-size checkpoint Start. YF cells divide asymmetrically, producing small daughters from full-sized mothers. As a result, mothers and daughters bud asynchronously. Mothers bud immediately but daughters grow in G1 until they achieve a critical cell size. By contrast, PH cells divide symmetrically, restricting mitosis until the bud grows to the size of the mother. Thus, mother and daughter bud synchronously in the next cycle, without a G1 delay before Start. YF and PH cells also exhibit distinct bud-site selection patterns. YF cells are bipolar, producing their second and subsequent buds at either pole. PH cells are unipolar, producing their second and subsequent buds only from the end opposite the junction with their mother. We propose that in PH cells a G2 cell-size checkpoint delays mitosis until bud size reaches that of the mother cell. We conclude that yeast and PH forms are distinct cell types each with a unique cell cycle, budding pattern, and cell shape.  相似文献   

16.
WangJW WuJR 《Cell research》2001,11(4):285-291
MCM10 protein is an essential replication factor involved in the initiation of DNA replication. A mcm10 mutant (mcm10-1) of budding yeast shows a growth arrest at 37 degrees C. In the present work, we have isolated a mcm10-1 suppressor strain, which grows at 37 degrees C. Interestingly, this mcm10-1 suppressor undergoes cell cycle arrest at 14 degrees C. A novel gene, YLR003c, is identified by high-copy complementation of this suppressor. We called it as Cms1 (Complementation of Mcm 10 Suppressor). Furthermore, the experiments of transformation show that cells of mcm10-1 suppressor with high-copy plasmid but not low-copy plasmid grow at 14 degrees C, indicating that overexpression of Cms1 can rescue the growth arrest of this mcm10 suppressor at non-permissive temperature. These results suggest that CMS1 protein may functionally interact with MCM10 protein and play a role in the regulation of DNA replication and cell cycle control.  相似文献   

17.
The yeast cell contains a nucleus whose rigid centrosome carries a band of Feulgen-positive chromatin (centrochromatin) on its surface. The first step in budding is the formation of the bud by an extension of the centrosome over which the cell wall persists. Next the nuclear vacuole extends a process into the bud which contains the chromosomes. Finally the centrochromatin divides directly and the cells separate; a plug either of centrosome or cytoplasm sealing the bud pore. The cytoplasm, the centrosome, the centrochromatin and the nuclear wall are autonomous non genic organelles which never originate de novo.Copulation is the reverse of budding. The centrosomes fuse first; the cytoplasms mix; the nuclear vacuoles fuse by processes which travel along the fused centrosomes; and finally the centrochromatins fuse to form a single band.Figures 1–12. Drawings of budding yeast cells fixed in Schaudinn's fluid and stained with iron alum hemotoxylin, mounted in balsam. The cell wall is not visible due to the clearing action of the balsam. Except for Figure 5, the chromosomes and the nucleolus in the nuclear vacuole have been completely destained. The bud scar described by Barton is shown clearly at the end of the cell distal from the centrosome. The nuclear vacuole is usually forced into the extrusion formed by the bud scar. Since the cell wall is not visible, the plug of material connecting bud and mother cell as shown in Figure 12, fits into the cell wall and probably corresponds to the plug in the bud scar described by Barton. The details of the budding process are described in the text.Figures 13–18. Copulating yeast cells stained with Barrett's hemotoxylin and aceto-orcein and mounted in the stain. Chromosomes are visible in the nuclear vacuoles. The centrosome is usually visible and often appears to have a core which stains differentially. Except in Figure 16, the centrochromatin is visible as darkly stained material; in some cases surrounded by a clear zone. The “thick waisted” form of the cells identifies them as derived from recent copulations and distinguishes them from budding cells. The process of copulation is discussed in the text.  相似文献   

18.
The budding process of the yeast form of Mucor rouxii was examined by electron microscopy of thin sections with particular reference to wall ontogeny. In most instances the bud wall is seen as a continuation of the inner layers of the parent cell wall. As the bud emerges it ruptures the outer layers of the parent wall. The bud wall is much thinner than the parent wall and remains so while the bud grows into a sphere of about one half the diameter of the parent cell. Then a septum begins to form centripetally, at the neck, by invagination of the plasmalemma. Before the neck canal is completely occuluded, electron-dense wall material is deposited into the septum space. Two separate septum walls are deposited, one on the parent side and one on the bud side of the invaginating plasmalemma. Septum wall formation extends to the surrounding neck walls. In this manner, the parent and bud cytoplasms become fully separated and each is surrounded by a continuous wall. The two cells remain attached to each other by the original neck wall; eventually, the bud abscisses leaving a birth scar on the bud cell and a more pronounced bud scar on the parent cell. In general, the mechanism of budding in this zygomycetous fungus resembles that of an ordinary ascomycetous yeast such as Saccharomyces cerevisiae.  相似文献   

19.
INTRODUCTIONDNA replication is a fundamenial process thatmust occur only once at each ce1l cycle. This restrictcontrol appears to be achieved through the coordi-nated actiVities of numerous proteins. The buddingyeast Saccharompes cerevhaae provides an excellenteukaryotic model fOr study of proteins invo1ved inthe control of DNA replication.In the budding yeast, minichromosome mainte-nance (MCM) proteins, MCM2-7, are a family of strsequence-related proteins that play crucia1 roles inr…  相似文献   

20.
Bud formation in yeasts with bipolar budding was studied by electron microscopy of thin sections.Budding in yeasts of the speciesSaccharomycodes ludwigii, Hanseniaspora valbyensis andWickerhamia fluorescens resulted in concentric rings of scar ridges on the wall of the mother cell. The wall between the ridges consisted of the scar plug left by the former budding and opened up in the formation of the next bud. The wall of the bud arose from under the wall of the mother cell.In the yeasts of the speciesNadsonia elongata more than one bud might be formed from the same plug.InSchizoblastosporion starkeyi-henricii the scar ridges were close together and apparently not separated by the entire plug.In all species a cross wall was formed between mother cell and bud which consisted of an electron-light layer between two layers of more electron-dense material. The cells separated along the light layer.The authors wish to thank Dr J. A. Barnett for corrections of the English text, and Mr J. Cappon for drawing Fig. 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号