首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
O6-methylguanine-DNA methyltransferase removes methyl groups from the O-6 position of guanine in DNA previously alkylated by alkylating carcinogens. Thus, the protein facilitates restoration of the impaired DNA. The content of O6-methylguanine-DNA methyltransferase was assayed in circulating lymphocytes and the impact of surgical trauma investigated. Patients (n = 13) without metabolic diseases admitted for elective orthopedic surgery were used. The patients were allowed water and food postoperatively. Blood was taken before and 3 days following surgery and the circulating lymphocytes were isolated. Before surgery, the O6-methylguanine-DNA methyltransferase content determined in the cell extracts showed patient-specific variations. Following surgery, a significant decrease of the protein by 60% (from 609 to 243 fmole/mg of DNA) was observed. The intensity of surgical trauma was confirmed by the decrease in plasma albumin concentration and the increase in white blood cell counts. The surgical trauma might elicit its effect as either a change in turnover of O6-methylguanine-DNA methyltransferase or a release from the thymus of lymphocytes low in enzyme levels. In summary, the surgical trauma per se was the cause of the pronounced decrease in the O6-methylguanine-DNA methyltransferase seen here. Investigations on O6-methylguanine-DNA methyltransferase levels have an important relevance in studies on tumor-promoting agents inhaled and then taken up by the T lymphocytes of prospective proliferating capacity.  相似文献   

2.
An inducible methyltransferase of Escherichia coli acts on O6-methylguanine in DNA by conveying the methyl group to one of its own cysteine residues. The protein has now been purified to apparent homogeneity from a constitutively expressing strain. The homogeneous methyltransferase exhibits no DNA glycosylase or endonuclease activity on alkylated DNA. Further, the methyltransferase activity is strikingly resistant to heat inactivation under reducing conditions. The protein has Mr = 18,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the sedimentation coefficient and Stokes radius of the native enzyme yield Mr = 18,400. The amino acid composition of the purified protein shows 4 to 5 cysteine residues/transferase molecule. The methylated, inactive form of the transferase has an unaltered molecular weight.  相似文献   

3.
The activity of the DNA repair protein O6-methylguanine DNA methyltransferase (MT) was compared in liver extracts from female ICR and male C57BL/6 mice at various ages (3-130 weeks old). Similar patterns of overall enzyme activity were observed in both strains with O6-MT activity being relatively low in young mice (3 or 8 weeks old). However, the activity significantly increased after adolescence (middle age), thereafter decreasing with old age (over 100 weeks old) to a level equivalent to that found in young mice. In an additional strain difference study, O6-MT activities in liver extracts from 4 strains of mice were compared at 5 and 30 weeks of age. Although a similar age-associated increase of enzyme activity in adolescence was confirmed in all 4 strains investigated, the closed-colony ICR mice differed from the inbred strains in demonstrating significantly higher levels of O6-MT activity in females than in males. However, the same tendency was also observed in a comparison of the sexes in 30-week-old C3H/HeN, C57BL/6 and BALB/c mice.  相似文献   

4.
Normal human bronchial epithelial cells cultured in serum-free medium were exposed to low doses o N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) to examine whether increased cellular resistance and increased activity of the DNA-repair enzyme O6-methylguanine-DNA methyltransferase could be induced. After treatment with single doses of MNNG a dose-dependent decrease in O6-methylguanine-DNA methyltransferase activity was observed, as expected for this unique repair system. The activity recovered to the starting level in about 24 h when a dose that consumed approximately 65% of the enzyme activity (0.2 micrograms/ml) was given, but did not exceed the activity in the untreated control. Furthermore, treatment every 6 h for 4-5 days with non-toxic concentrations of MNNG (0.04-0.12 micrograms/ml) did not increase O6-methylguanine-DNA methyltransferase activity. Neither was cell survival following a range of challenge doses significantly increased. Our data suggest that human bronchial epithelial cells do not adapt to MNNG.  相似文献   

5.
The DNA repair enzyme O6-methylguanine-DNA methyltransferase has been used as a reagent to analyse the initial reaction sites of alkylating agents such as chloroethylnitrosourea that cross-link DNA. The transferase can be employed for this purpose because it removes substituted ethyl groups from DNA, as shown by its ability to act on O6-hydroxyethylguanine residues in DNA. The enzyme counteracts the formation of interstrand cross-links induced by bis-chloroethylnitrosourea, but not those induced by nitrogen mustard. Once formed, chloroethylnitrosourea-induced cross-links are not broken by the enzyme. In agreement with deductions from experiments with living cells, it is concluded that chloroethylnitrosourea act by forming reactive monoadducts at the O6 position of guanine and/or the O4 position of thymine, which subsequently generate -CH2CH2- bridges to the complementary DNA strand. A new method for quantitating interstrand cross-links in DNA has been employed.  相似文献   

6.
A partially purified extract prepared from adapted M. luteus cells contains repair functions for oxygen methylated pyrimidine residues present in alkylated DNA. The removal of O2-MeT is mediated by a DNA glycosylase enzyme whereas disappearance of O4-MeT is effected by a methyltransferase in a manner similar to the in situ repair of O6-MeG. O4-MeT methyltransferase enzyme is unusually heat resistant. Synthesis of these repair proteins, which are distinctly different from the previously known inducible 3-MeA DNA glycosylase and O6-MeG methyltransferase activities, forms a part of the adaptive response.  相似文献   

7.
The ability of human-liver microsomes to metabolically activate the food-derived heterocyclic amine, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and the model mutagen, 2-aminofluorene (AF), has been investigated using Salmonella typhimurium TA98. In 6 subjects tested the number of revertants produced by 0.1 micrograms IQ per mg microsomal protein varied from 11, 830 +/- 320 to 42, 830 +/- 290 (mean +/- SD). With the same livers and a dose of 10 micrograms AF per plate the number of revertants varied from 15,770 +/- 1600 to 29,380 +/- 810 per mg microsomal protein. Metyrapone and alpha-naphthoflavone caused differential inhibition of the mutagenesis of both IQ and AF indicating the involvement of different forms of cytochrome P450 in the metabolic activation of these amines in human-liver microsomes. In presence of human-liver microsomes IQ produced no detectable increase in mutations at the hypoxanthine phosphoribosyl transferase locus in lymphocytes and caused no increase in micronuclei formation at realistic exposure levels.  相似文献   

8.
I A Teo 《Mutation research》1987,183(2):123-127
In extracts of E. coli treated with an adapting regime of MNNG, the induced 39kd Ada protein having O6-MeG-DNA methyltransferase activity is processed to a 19kd active domain corresponding to the C-terminal half of the intact protein. This proteolytic processing has been followed on Western immunoblots using antisera raised against the 19kd fragment. Initial processing at 25 degrees C or 37 degrees C mainly generates a fragment of mol. wt. 24kd which then undergoes a slower second cleavage to generate the 19kd active domain. Preceding this second cleavage site is a sequence of amino acids Thr- -Gly-Met-Thr- -Lys that also occurs at another site in the N-terminal half of the 39kd methyltransferase. It is proposed that this sequence is a recognition site for proteolytic activity. On the basis of cleavage of the Ada protein at either one or both of these sites, fragments may be generated of mol. wt. 24kd and 19kd containing the active site for O6-methylguanine and O4-methylthymine repair, and 15kd and 20kd, containing the active site for methylphosphotriester repair. These observations explain previous reports by others on the existence in cell extracts of multiple methyltransferase activities of different sizes recognizing O-methyl lesions in DNA. The cellular protease involved is resistant to a wide range of protease inhibitors.  相似文献   

9.
1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) is an important cause of pulmonary toxicity. BCNU alkylates DNA at the O(6) position of guanine. O(6)-methylguanine-DNA methyltransferase (MGMT) is a DNA repair protein that removes alkyl groups from the O(6) position of guanine. To determine whether overexpression of MGMT in a lung cell reduces BCNU toxicity, the MGMT gene was transfected into A549 cells, a lung epithelial cell line. Transfected A549 cell populations demonstrated high levels of MGMT RNA, MGMT protein, and DNA repair activity. The overexpression of MGMT in lung epithelial cells provided protection from the cytotoxic effects of BCNU. Control A549 cells incubated with 100 microM BCNU had a cell survival rate of 12.5 +/- 1.2%; however, A549 cells overexpressing MGMT had a survival rate of 71.8 +/- 2.7% (P < 0.001). We also demonstrated successful transfection of MGMT into human pulmonary artery endothelial cells and a primary culture of rat type II alveolar epithelial cells with overexpression of MGMT, resulting in significant protection from BCNU toxicity. These data suggest that overexpression of DNA repair proteins such as MGMT in lung cells may protect the lung cells from cytotoxic effects of cancer chemotherapy drugs such as BCNU.  相似文献   

10.
DNA methyltransferase activity has been identified in crude extracts of Drosophila melanogaster pupae for the removal of methyl groups from O-6 methylguanine appearing in alkylated DNA. Additionally, N-7 methylguanine and 3 methyladenine appear to be uniquely susceptible to methyltransferase activity that resides in Drosophila pupae. Consistent with this, tests to detect DNA glycosylase activity for the repair of the latter two modified bases was unsuccessful, even though a substantial loss of methyl groups from these bases was observed. Conversely, the repair of methylated purines was not detected in extracts of Drosophila embryos. The removal of methyl groups from methylated purines was dependent upon incubation temperature and was proportional to the amount of protein added to reaction mixtures. Results indicate that the methyl group is attached to protein during the repair of methylated DNA, suggesting that it is similar to the O6-methylguanine-DNA methyltransferase identified in other organisms. Although other explanations are possible, the inability to detect DNA glycosylase activity suggests that Drosophila may not rely on base excision repair for the removal of modified or nonconventional basis in DNA.  相似文献   

11.
The O6-methylguanine-DNA methyltransferase of Escherichia coli acts rapidly and stoichiometrically to convert a mutagenic O6-methylguanine residue in DNA to unsubstituted guanine. Even at low protein concentrations and in the absence of any cofactors, the transfer of a methyl group to one of the protein's own cysteine residues occurs in less than 2 s at 37 degrees C. The entire kinetic process can be followed experimentally at 5 degrees C. Formation of S-methylcysteine in the protein is accompanied by loss of activity and accounts for the exceptional suicide kinetics of this enzyme as well as for the sharp saturation of O6-methylguanine repair observed in vivo. The enzyme can remove greater than 98% of the methyl groups from O6-methylguanine present in alkylated DNA, but leaves N-alkylated purines untouched. Single-stranded DNA containing O6-methylguanine is a poor substrate, with the methyl transfer occurring at approximately 0.1% of the rate for duplex DNA. This latter observation may explain the high frequency of mutations induced by alkylating agents at DNA replication forks.  相似文献   

12.
I Teo  B Sedgwick  B Demple  B Li    T Lindahl 《The EMBO journal》1984,3(9):2151-2157
The expression of several inducible enzymes for repair of alkylated DNA in Escherichia coli is controlled by the ada+ gene. This regulatory gene has been cloned into a multicopy plasmid and shown to code for a 37-kd protein. Antibodies raised against homogeneous O6-methylguanine-DNA methyltransferase (the main repair activity for mutagenic damage in alkylated DNA) were found to cross-react with this 37-kd protein. Cell extracts from several independently derived ada mutants contain variable amounts of an altered 37-kd protein after an inducing alkylation treatment. In addition, an 18-kd protein identical with the previously isolated O6-methyl-guanine-DNA methyltransferase has been identified as a product of the ada+ gene. The smaller polypeptide is derived from the 37-kd protein by proteolytic processing.  相似文献   

13.
Uracil-DNA glycosylase, the enzyme that catalyzes the release of free uracil from single-stranded and double-stranded DNA, has been purified 26,600-fold from HeLa S3 cell extracts. The enzyme preparation was essentially homogeneous as judged by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The native enzyme is a small monomeric protein of molecular mass 29 kDa. A minor uracil-DNA glycosylase preparation was also obtained in the final chromatographic step. This preparation is homogeneous with a molecular mass of 29 kDa and may represent the mitochondrial enzyme. This report also presents a 700-fold purification of HeLa S3 cell O6-methylguanine-DNA methyltransferase. The glycosylase and methyltransferase showed very similar chromatographic properties. The report indicates that the lability of the methyltransferase upon purification may be a consequence of the total separation of the two DNA repair enzymes or of the possibility that some other stabilizing factor is involved.  相似文献   

14.
Female C57Bl/6J mice were given drinking water containing 0.05% propylthiouracil to induce a hypothyroid condition. Mitochondrial glycerol-3-phosphate dehydrogenase activity, used as an index of hypothyroidism, was 57.1 +/- 4.5 and 29.4 +/- 3.8 nmol/min per mg of protein for control and propylthiouracil-treated animals respectively. Administration of tri-iodothyronine resulted in an approx. 4.5-fold increase in dehydrogenase activity in propylthiouracil-treated animals. A dose-dependent increase in hepatic GSH S-transferase activity in propylthiouracil-treated animals was observed at tri-iodothyronine concentrations ranging from 2 to 200 micrograms/100 g body wt. This increase in transferase activity was seen only when 1,2-epoxy-3-(p-nitrophenoxy)propane was used as substrate for the transferase. Transferase activity with 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene as substrate was decreased by tri-iodothyronine. Administration of actinomycin D (75 micrograms/100 g body wt.) inhibited the tri-iodothyronine induction of transferase activity. Results of these studies strongly suggest that tri-iodothyronine administration markedly affected the activities of GSH S-transferase by inducing a specific isoenzyme of GSH S-transferase and suppressing other isoenzymic activities.  相似文献   

15.
16.
DNA repair by O6-methylguanine-DNA methyltransferase (O6-MT) is accomplished by removal by the enzyme of the methyl group from premutagenic O6-methylguanine-DNA, thereby restoring native guanine in DNA. The methyl group is transferred to an acceptor site cysteine thiol group in the enzyme, which causes the irreversible inactivation of O6-MT. We detected a variety of different forms of the methylated, inactivated enzyme in crude extracts of human spleen of molecular weights higher and lower than the usually observed 21-24kDa for the human O6-MT. Several apparent fragments of the methylated form of the protein were purified to homogeneity following reaction of partially-purified extract enzyme with O6-[3H-CH3]methylguanine-DNA substrate. One of these fragments yielded amino acid sequence information spanning fifteen residues, which was identified as probably belonging to human methyltransferase by virtue of both its significant sequence homology to three procaryote forms of O6-MT encoded by the ada, ogt (both from E. coli) and dat (B. subtilis) genes, and sequence position of the radiolabelled methyl group which matched the position of the conserved procaryote methyl acceptor site cysteine residue. Statistical prediction of secondary structure indicated good homologies between the human fragment and corresponding regions of the constitutive form of O6-MT in procaryotes (ogt and dat gene products), but not with the inducible ada protein, indicating the possibility that we had obtained partial amino acid sequence for a non-inducible form of the human enzyme. The identity of the fragment sequence as belonging to human methyltransferase was more recently confirmed by comparison with cDNA-derived amino acid sequence from the cloned human O6-MT gene from HeLa cells (1). The two sequences compared well, with only three out of fifteen amino acids being different (and two of them by only one nucleotide in each codon).  相似文献   

17.
The mutagenic and carcinogenic effects of simple alkylating agents are mainly due to methylation at the O6 position of guanine in DNA. O6-methylguanine directs the incorporation of either thymine or cytosine without blocking DNA replication, resulting in GC to AT transition mutations. In prokaryotic and eukaryotic cells antimutagenic repair is effected by direct reversal of this DNA damage. A suicidal methyltransferase repair protein removes the methyl group from DNA to one of its own cysteine residues. The resulting self-methylation of the active site cysteine renders the protein inactive. Here we report the X-ray structure of the 19 kDa C-terminal domain of the Escherichia coli ada gene product, the prototype of these suicidal methyltransferases. In the crystal structure the active site cysteine is buried. We propose a model for the significant conformational change that the protein must undergo in order to bind DNA and effect methyl transfer.  相似文献   

18.
The HLA-A mutation assay: improved technique and normal results   总被引:1,自引:0,他引:1  
The HLA-A assay for detection of mutant lymphocytes has been modified, principally by incorporation of an overnight-incubation step which has resulted in improved immunoselection. For 83 estimations on cells from 21 normal individuals with a mean age of 35, the in vivo mutant frequency was 2.99 X 10(-5) +/- 1.48 X 10(-5) (mean +/- 1 SD). For 11 estimations on cells from 10 elderly individuals with a mean age of 78, the mutant frequency was significantly greater, being 7.16 X 10(-5) +/- 4.06 X 10(-5). Similar results were obtained when HLA-A2 or HLA-A3 mutants were enumerated. Mutant frequency measured at the HLA-A locus is almost an order of magnitude greater than that measured at the hypoxanthine phosphoribosyl transferase locus, but at least the major part of this difference is likely to be due to factors other than a difference in genetic stability between the two loci.  相似文献   

19.
The ability to repair 'mis-instructive', O6-methylguanine, and 'non-instructive', AP sites, DNA lesions in Fischer 344 rat livers at various ages was determined. Different behaviours were observed. While the AP-endodesoxyribonuclease enzymes displayed a high constant level throughout the animals' lifetime, the O6-methylguanine-DNA methyltransferase activity presented a stepwise modulation (DNA normalisation of results): the O6-MT activity significantly increased within the first month of animal life and enhanced again after 6 months reaching a maximum plateau in the 12-18-month-old animals. Thereafter a net significant decrease of O6-MT enzyme was detected in the 24-month-old group. While the repair of the widely formed AP sites appeared uniformly efficient like 'house keeping' functions, the removal of the rare precancerous O6-methylguanine is age-dependent indicating a decreased protection of the youngest and oldest animals against this 'mis-instructive' damage. However, any extrapolation of the age-associated cancer risk needs further assessment.  相似文献   

20.
O6-Methylguanine-DNA methyltransferase, a ubiquitous and unusual DNA repair protein, eliminates mutagenic and cytotoxic O6-alkylguanine from DNA by transferring the alkyl group to one of its cysteine residues in a second-order suicide reaction. This 22-kDa protein was immunoaffinity-purified to homogeneity from cultured human lymphoblasts (CEM-CCRF line) and compared with the O6-methylguanine-DNA methyltransferase purified to homogeneity from Escherichia coli expressing a cloned human cDNA. The cellular and recombinant proteins were identical in size, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of intact molecules and their peptides. Immunoprobing of Western blots with three monoclonal antibodies specific for human cellular O6-methylguanine-DNA methyltransferase further indicated identity of the two proteins. The amino acid sequence of the cellular protein was experimentally determined for 87 out of a total of 207 residues and was found to be identical to that deduced from the cDNA sequence. A unique cysteine residue at position 145 was identified as the methyl acceptor site by autoradiographic analysis of peptides and sequence analysis of 3H-methylated O6-methylguanine-DNA methyltransferase. These observations establish that the cloned O6-methylguanine-DNA methyltransferase cDNA encodes the full-length O6-methylguanine-DNA methyltransferase polypeptide that is normally present in human cells. Moreover, the cellular protein does not appear to be significantly modified by posttranslational processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号