首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resolution of inflammation requires clearance of activated neutrophils by phagocytes in a manner that protects adjacent tissues from injury. Mechanisms governing apoptosis and clearance of activated neutrophils from inflamed areas are still poorly understood. We used dimethylsulfoxide-differentiated HL-60 cells showing inducible oxidase activity to study NADPH oxidase-induced apoptosis pathways typical of neutrophils. Activation of the NADPH oxidase by phorbol myristate acetate caused oxidative stress as shown by production of superoxide and hydrogen peroxide, depletion of intracellular glutathione, and peroxidation of all three major classes of membrane phospholipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. In addition, phorbol myristate acetate stimulation of the NADPH oxidase caused apoptosis, as evidenced by apoptosis-specific phosphatidylserine externalization, increased caspase-3 activity, chromatin condensation, and nuclear fragmentation. Furthermore, phorbol myristate acetate stimulation of the NADPH oxidase caused recognition and ingestion of dimethylsulfoxide-differentiated HL-60 cells by J774A.1 macrophages. To reveal the apoptosis-related component of oxidative stress in the phorbol myristate acetate-induced response, we pretreated cells with a pancaspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-fmk), and found that it caused partial inhibition of hydrogen peroxide formation as well as selective protection of only phosphatidylserine, whereas more abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine, were oxidized to the same extent in the absence or presence of z-VAD-fmk. In contrast, inhibitors of NADPH oxidase activity, diphenylene iodonium and staurosporine, as well as antioxidant enzymes, superoxide dismutase/catalase, completely protected all phospholipids against peroxidation, inhibited expression of apoptotic biomarkers and externalization of phosphatidylserine, and reduced phagocytosis of differentiated HL-60 cells by J774A.1 macrophages. Similarly, zymosan-induced activation of the NADPH oxidase resulted in the production of superoxide and oxidation of different classes of phospholipids of which only phosphatidylserine was protected by z-VAD-fmk. Accordingly, zymosan caused apoptosis in differentiated HL-60 cells, as evidenced by caspase-3 activation and phosphatidylserine externalization. Finally, zymosan triggered caspase-3 activation and extensive SOD/catalase-inhibitable phosphatidylserine exposure in human neutrophils. Overall, our results indicate that NADPH oxidase-induced oxidative stress in neutrophil-like cells triggers apoptosis and subsequent recognition and removal of these cells through pathways dependent on oxidation and externalization of phosphatidylserine.  相似文献   

2.
To determine the effect of Se status on the level of mRNA for Se-dependent glutathione peroxidase (EC 1.11.1.9), rats were fed either a Se-deficient torula yeast diet (less than 0.02 mg Se/kg diet) or a Se-adequate diet (+0.2 mg Se/kg as Na2SeO3) for greater than 135 d. Liver glutathione peroxidase activity was 0.025 for Se-deficient versus 0.615 EU/mg protein for Se-adequate rats. Total liver RNA and polyadenylated RNA were isolated and subjected to Northern blot analysis using a 700 bp DNA probe from cloned murine glutathione peroxidase. Autoradiography showed that Se-deficient liver had 7-17% of the mRNA for glutathione peroxidase present in Se-adequate liver, suggesting that Se status may regulate the level of mRNA for this selenoenzyme.  相似文献   

3.
OAG-stimulated superoxide (O2) production by HL-60 granulocytes showed enantiomeric specificity but reached a maximum of only 5% of that produced by either phorbol myristate acetate (PMA) or phorbol dibutyrate (PDBu). At 10-100 microM, OAG displaced specifically-bound [3H]PDBu from intact HL-60 cells by only 25%, suggesting limited cell penetration. OAG (10-100 microM) also inhibited PDBu-stimulated O2 production by 25%; this inhibition was enantiomerically specific. However, at a lower concentration (3 microM), both enantiomers of OAG fully blocked O2 production stimulated by PMA (0.5 microM). This inhibition is probably artefactual, due to the hydrophobic PMA physically associating with OAG in the extracellular fluid.  相似文献   

4.
The release of the reactive oxygen species that accompanies the oxidative burst was studied in HL60 cells differentiated with either dimethylsulphoxide, butyrate or phorbol myristate acetate in order to establish the extent to which differentiated cells are phenotypically similar to human neutrophils, monocytes and macrophages. When phorbol myristate acetate was used as a stimulus, the rates of superoxide production by dimethylsulphoxide and butyrate differentiated HL60 cells was not significantly different from those observed in neutrophils and monocytes isolated from normal peripheral blood. Similar results were obtained when luminol-dependent chemiluminescence was measured in the presence of horseradish peroxidase using phorbol myristate acetate as the stimulus. However, in the absence of horseradish peroxidase, the luminol-dependent chemiluminescence in the dimethylsulphoxide and butyrate-differentiated HL60 cells was significantly lower than that of the control cells isolated from human blood, reflecting the absence of myeloperoxidase in the differentiated cells. In contrast, HL60 cells differentiated by phorbol myristate acetate failed to show any increased generation of superoxide or luminol-dependent chemiluminescence upon stimulation. Impaired release of lysosomal enzymes by the chemically differentiated cells suggests impairments in the extent of differentiation resulting in cells with defective azurophilic degranulation processes. It is concluded that HL60 cells differentiated by the above agents are somewhat controversial models of promyelocyte differentiation into typical neutrophilic, monocytic and macrophage-like cells.  相似文献   

5.
Selenium (Se) levels in whole blood and plasma, and glutathione peroxidase (GSH-Px) activities in red cells and plasma were measured in ewes fed an Se-deficient diet injected with barium selenate before breeding season. Highly significant increases in Se levels and GSH-Px activities (P<0.001) were observed throughout the gestation period and during lactation. In the control group, Se levels and GSH-Px activities decreased significantly (P<0.001), and were at critically low levels during lambing and lactation periods.  相似文献   

6.
Selenium (Se) deficiency is associated with decreased activities of Se-dependent antioxidant enzymes, glutathione peroxidase (GPx) and thioredoxin reductase (TR), and with changes in the cellular redox status. We have previously shown that host Se deficiency is responsible for increased virulence of influenza virus in mice due to changes in the viral genome. The present study examines the antioxidant defense systems in the lung and liver of Se-deficient and Se-adequate mice infected with influenza A/Bangkok/1/79. Results show that neither Se status nor infection changed glutathione (GSH) concentration in the lung. Hepatic GSH concentration was lower in Se-deficient mice, but increased significantly day 5 post infection. No significant differences due to Se status or influenza infection were found in catalase activities. As expected, Se deficiency was associated with significant decreases in GPx and TR activities in both lung and liver. GPx activity increased in the lungs and decreased in the liver of Se-adequate mice in response to infection. Both Se deficiency and influenza infection had profound effects on the activity of superoxide dismutase (SOD). The hepatic SOD activity was higher in Se-deficient than Se-adequate mice before infection. However, following influenza infection, hepatic SOD activity in Se-adequate mice gradually increased. Influenza infection was associated with a significant increase of SOD activity in the lungs of Se-deficient, but not Se-adequate mice. The maximum of SOD activity coincided with the peak of pathogenesis in infected lungs. These data suggest that SOD activation in the lung and liver may be a part of a compensatory response to Se deficiency and/or influenza infection. However, SOD activation that leads to increased production of H(2)O(2) may also contribute to pathogenesis and to influenza virus mutation in lungs of Se-deficient mice.  相似文献   

7.
Human neutrophils aggregate and release mediators of inflammation, such as active oxygen species and lysosomal enzymes, when exposed to the chemoattractant, fMet-Leu-Phe, or the tumor promotor, phorbol myristate acetate. In order to 'stage' events which may lead to such neutrophil responses, we determined the temporal relationship between stimulus-induced changes in the endogenous phospholipids phosphatidylinositol (PI) and phosphatidic acid, the mobilization of calcium, and the onset of aggregation and generation of superoxide anion during the initial 2 min of cell activation. Within 5 s after addition of fMet-Leu-Phe (10(-7) M) neutrophils accumulated phosphatidic acid and the levels of PI decreased, as determined by two-dimensional thin-layer chromatography and phosphorus determinations. By 5 s, phosphatidic acid levels rose approximately 3.5-fold and at 15 s the loss of PI exceeded the quantity of phosphatidic acid generated. In response to phorbol myristate acetate (1 microgram/ml), however, changes in PI or phosphatidic acid were not observed until after 60 s. Accumulation of phosphatidic acid in fMet-Leu-Phe-stimulated cells was not inhibited by chelation of extracellular calcium. Neutrophils exposed to either fMet-Leu-Phe or phorbol myristate acetate also showed rapid decrements in fluorescence of cell-associated chlorotetracycline (used as an indirect probe of mobilization of intracellular membrane-associated calcium) and took up 45Ca2+ from the extracellular medium (under 60 s). The results indicate that changes in calcium mobilization, together with the alterations in phospholipid metabolism (under 5 s) anteceded aggregation and the generation of O2-. (10-15 s) induced by fMet-Leu-Phe. In contrast, when neutrophils were exposed to phorbol myristate acetate, changes in PI and phosphatidic acid (over 60 s) were observed after the mobilization of calcium (under 5 s) and the onset of O2-. generation and aggregation (30-35 s).  相似文献   

8.
9.
We have studied the effect of selenium on the expression of a cellular glutathione peroxidase, GSHPx-1, in transfected MCF-7 cells and in doxorubicin-resistant (Adrr) MCF-7 cells. A GSHPx-1 cDNA with a Rous Sarcoma virus promoter was transfected into a human mammary carcinoma cell line, MCF-7, which has very low endogenous cytosolic glutathione (GSH) peroxidase activity and no detectable message. The transfectant with the highest GSH peroxidase activity among the isolates, MCF-7H6, was characterized. Adrr MCF-7 cells, a subline of MCF-7 cells, also has elevated GSH peroxidase activity. GSH peroxidase expressed by MCF-7H6 and Adrr MCF-7 cells is similar to the endogenous GSHPx-1 based on molecular weight, immunoreactivity, and metabolic labeling with 75Se. MCF-7H6 and Adrr MCF-7 cells grown in Se-deficient media had 2.6 +/- 2.4 (mean +/- S.D.) and 4.2 +/- 3.6 units/mg protein of GSH peroxidase specific activity, respectively. Se supplementation increased GSH peroxidase activity in a concentration- and time-dependent fashion. Enzymatic activity reached a level of 164 +/- 62 in MCF-7H6 cells and 114 +/- 27 in Adrr MCF-7 cells within 5 days of growth in media supplemented with 30 nM Se. Northern analysis revealed that Se-deficient MCF-7H6 cells expressed 2.1 +/- 0.4-fold less GSHPx-1 mRNA than their Se-sufficient counterparts. Similarly, Se-deficient Adrr MCF-7 cells expressed 3.3 +/- 1.8-fold less GSHPx-1 mRNA than their Se-supplemented counterparts after the quantity of mRNA was normalized with beta-actin. These studies suggest that modulation of GSH peroxidase activity by Se in both MCF-7H6 transfectants expressing pRSV-GSHPx-1 and Adrr MCF-7 cells expressing endogenous GSHPx-1 occurs largely at the translational level, and to a lesser degree at the level of mRNA, possibly by stabilizing GSHPx-1 mRNA since the transfected cDNA in MCF-7H6 cells has only 5 nucleotides 5' to the AUG initiation codon.  相似文献   

10.
Influence of selenium deficiency on vital functions in rats   总被引:1,自引:0,他引:1  
To clarify the relationship between selenium (Se) deficiency and functional disorders, the authors determined the Se concentration, anti-oxidant enzyme activity, and other parameters in rats fed a Se-deficient diet. Rats fed the Se-deficient diet showed a decrease in Se concentration and glutathione peroxidase (GSH-Px) activity in plasma, erythrocytes, heart, liver, and skeletal muscle from the first week after the initiation of the diet, an increase in heart lipid peroxide concentration from the second week, and an increase in liver glutathione S-transferase activity from the fourth week. From the twelfth week, a decrease in the growth rate in the rats fed the Se-deficient diet was observed. In spite of this growth impairment, no changes in electrocardiogram, muscle tone, degree of hemolysis, plasma biochemistry, or hematological values were detected. In summary, the authors found that a reduction of body Se is easily induced, but that the appearance of functional disorders following Se deficiency is difficult to detect in rats.  相似文献   

11.
Protein tyrosine phosphatase 1B (PTP1B) is a key enzyme in the counterregulation of insulin signaling, and its physiological modulation depends on H2O2 and glutathione (GSH). Se via GSH peroxidases (GPxs) and its specific metabolism is involved in the removal of H2O2 and in the regulation of GSH metabolism. Recent results from animal trials and epidemiological studies with humans have shown that a high GPx1 activity or a permanent surplus of Se may promote the development of obesity and diabetes. Our nutrition physiological study with 7 x 7 growing rats was carried out to examine if PTP1B is modulated by Se supplements and, thus, may represent one trigger mediating these undesirable metabolic effects of Se. One group of rats was fed an Se-deficient diet for 8 weeks. The diets of the other six groups contained Se as selenite or selenate according to the recommendations (0.20 mg/kg diet) and at two supranutritional levels (1.00 and 2.00 mg/kg diet). All Se-supplemented animals featured a significantly higher body weight (6-14%) compared to their Se-deficient companions. Expression and activity of GPx1 in the liver of Se supplemented animals was 10- and 70-fold higher compared to Se deficiency. The detailed study of PTP1B regulation using an enzymatic assay and Western Blot analysis with an antibody against protein glutathionylation revealed that PTP1B was significantly up-regulated by both a maximization of GPx1 activity and by increasing dietary Se supply, reducing its inhibition via glutathionylation. Selenate effected a stronger PTP activation compared to selenite. In conclusion, our results suggest that the modulation of PTP1B activity may represent one plausible mechanism by which a long-term intake of Se supplements exceeding the requirements can promote the development of obesity and diabetes and needs further intensive investigation.  相似文献   

12.
As a model system for analysing interactions between chlamydiae and myeloid cells and their precursors, we have studied binding, ingestion and destruction of Chlamydia trachomatis (L2 serovar) by the human promyelocytic cell line HL-60. HL-60 cells were induced by phorbol myristate acetate (PMA) and dimethyl sulphoxide (DMSO) to differentiate along either the macrophage or the granulocyte pathway, respectively. Using an immunofluorescence assay and electron microscopy, we have shown that induced (differentiated) HL-60 cells, but not uninduced (undifferentiated) HL-60 or other cell lines treated with PMA or DMSO, exhibit increased binding, ingestion and elimination of C. trachomatis; these activities are associated with specific histochemical and antigenic markers of myeloid differentiation. These results suggest that myeloid cells acquire the ability to interact with and kill chlamydiae during cell development.  相似文献   

13.
Membrane ganglioside changes in murine peritoneal macrophages and the human promyelocytic leukemia cell line HL-60 have been assessed by two-dimensional thin-layer chromatography. C3H/HeJ mice respond to protein-containing endotoxin but are hyporesponsive to protein-free endotoxin preparations. Compared to unstimulated resident cells, protein-containing endotoxin produced an alteration in the C3H/HeJ macrophage ganglioside pattern whereas protein-free endotoxin did not. In comparison, differentiation of HL-60 cells to a neutrophil-like cell by dimethylsulfoxide gave a ganglioside pattern similar to unstimulated HL-60 cells. However, differentiation of HL-60 cells by phorbol myristate acetate to macrophage-like cells results in a large increase in the monosialoganglioside GM3. The evidence presented indicates that discrete ganglioside changes occur in murine monocytes and HL-60 cells upon induction to cells with increased macrophage functions.  相似文献   

14.
Pregnant sows were injected subcutaneously (s.c.) or intramuscularly (i.m.) with a barium selenate suspension (0.5–1.0 mg Se/kg body weight (b.w.)) and together with control animals fed a commercial diet. No response to the injection was seen either in blood selenium levels or in glutathione peroxidase (GSH-Px) activity in the sows. There was, however, a significant difference in these parameters between piglets born from treated dams and control animals. This status was maintained during the nursing period. In another experiment pigs (20 kg b.w.) on a Se-deficient diet were injected s.c. and i.m. with barium selenate (2.5 mg Se/kg b.w.). The treated groups maintained their blood levels of selenium and GSH-Px activity, although the selenium values in the group treated intramuscularly started to decline after 4 weeks. Organ samples from both groups were equal with regard to selenium at the time of slaughter while the control group showed a rapid decline both in blood selenium levels and GHS-Px activity.  相似文献   

15.
Selenium (Se) is a potential anticarcinogenic nutrient, and the essential role of Se in cell growth is well recognized but certain cancer cells appear to have acquired a survival advantage under conditions of Se-deficiency. To understand the molecular basis of Se-anticancer effects at nutritional doses (nmol/L) for cultured cells, we generated Se-deficient colon Caco-2 cells by gradually reducing serum in media because serum contains a trace amount of Se. The glutathione peroxidase (GPx) activity of Se-deficient Caco-2 cells was 10.8 mU/mg protein compared to 133.6 approximately 146.3 mU/mg protein in Caco-2 cells supplemented with 500 nmol/L selenite, SeMSC or SeMet (three tested Se-chemical forms) after 7-d culture in serum free media. Interestingly, there were no detectable differences in cell growth, cell cycle progression between Se-deficient cells and cells supplemented with 500 nmol/L Se. To examine differential cancer signaling-gene expression between Se-deficient and Se-supplemented cells, we employed a cancer signal pathway-specific array assay coupled with the real time PCR analysis. Our data demonstrate that although Caco-2 cells are resistant to Se deprivation, Se may exert its anticancer property through increasing the expression of humoral defense gene (A2M) and tumor suppressor-related genes (IGFBP3, HHIP) while decreasing pro-inflammatory gene (CXC L9, HSPB2) expression.  相似文献   

16.
In this study we examined whether microtubules and heat shock protein 90 (Hsp90) are involved in phorbol myristate acetate (PMA) and N-formyl-Met-Leu-Phe (fMLP)-induced oxidative burst in DMSO-differentiated HL-60 cells. Our results showed that microtubule interfering agents, paclitaxel (1-5 microM), colchicine (1-100 microM), nocodazole (1-20 microM), and vincristine (1-50 microM), did not affect either PMA or fMLP-induced oxidative burst. In contrast, radicicol, an inhibitor of Hsp90, inhibited fMLP-induced oxidative burst in time and concentration-dependent manner where IC50 value for 30 min pre-incubation was 16.5 +/- 3.5 microM radicicol. We conclude that both PMA and fMLP-induced oxidative burst in DMSO-differentiated HL-60 cells is microtubule-independent while the latter requires Hsp90 activity.  相似文献   

17.
A new endogenous differentiating factor (myelopeptide-4) for myeloid cells   总被引:2,自引:0,他引:2  
Along with known lymphokines involved in the regulation of hematopoiesis, a new differentiating factor (myelopeptide-4, MP-4) for myeloid cells was found. The peptide (Phe-Arg-Pro-Arg-Ile-Met-Thr-Pro) originally isolated from the culture medium of porcine bone marrow cell culture was examined for its ability to induce differentiation in two human myeloid leukemia cell lines, HL-60 and K-562. Agents with well-known differentiation-inducing activity, such as phorbol myristate acetate, dimethylsulfoxide and the lymphokines were used as a reference. It has been shown that MP-4 significantly influences the integral characteristics of metabolism, expression of surface antigens and morphology of these cells. It decreased the level of chromosomal DNA synthesis and, in parallel, increased the total protein synthesis in both HL-60 and K-562 cells. MP-4 induced the expression of CD14 monocyte-specific surface antigen and the appearance of mature monocytes/macrophages in HL-60 cell cultures. There was a good correlation of cell metabolic/morphological changes and the CD14 marker expression for HL-60 cells. A similar phenomenon was observed in K-562 cells treated with MP-4 when the levels of hemoglobin synthesis were detected in their cytoplasm. Thus, we consider MP-4 as a new endogenous differentiating factor for myeloid cells.  相似文献   

18.
We investigated the gene expression profiles of vascular endothelial growth factor (VEGF) and its receptors in HL-60 leukemia cells. In the VEGF family, both mRNA and protein expression of VEGF-C were up-regulated in phorbol myristate acetate (PMA)-differentiated HL-60 cells. We detected two bands of ∼31 and ∼60 kDa in cell lysates, and the higher expression of ∼31 kDa band was further increased after stimulation with tumor necrosis factor (TNF)-α and lipopolysaccharide (LPS). A ∼31 kDa VEGF-C protein was also detected in conditioned media from PMA-differentiated HL-60 cells after LPS stimulation. The mRNA expression of VEGFR-1, VEGFR-2, and neuropilin-1 (NRP-1) was markedly up-regulated in PMA-differentiated HL-60 cells, corresponding to the results from VEGF binding studies, in which VEGF binding activity was increased in PMA-differentiated HL-60 cells. These did not occur in dimethylsulfoxide (DMSO)-differentiated HL-60 cells. The expression of VEGF-C and VEGF receptors is regulated specifically in HL-60 cells during macrophage differentiation.  相似文献   

19.
Selenium (Se) deficiency in rats produced significant increases in the activity of hepatic glutathione S-transferase (GST) with 1-chloro-2,4-dinitrobenzene as substrate and in various GST isoenzymes when determined by radioimmunoassay. These changes is GST activity and concentration were associated with Se deficiency that was severe enough to provoke decreases of over 98% in hepatic Se-containing glutathione peroxidase activity (Se-GSHpx). However, decreases in hepatic Se-GSHpx of 60% induced by copper (Cu) deficiency had no effect on GST activity or concentration. Increased GST activity in Se deficiency has previously been postulated to be a compensatory response to loss of Se-GSHpx, since some GSTs have a non-Se-glutathione peroxidase (non-Se-GSHpx) activity. However, the GST isoenzymes determined in this study, GST Yb1Yb1, GST YcYc and GST YaYa, are known to have up to 30-fold differences in non-Se-GSHpx activity, but they were all significantly increased to a similar extent in the Se-deficient rats.  相似文献   

20.
In an attempt to develop a constant and reproducible in vitro system for a detailed analysis of cytotoxic effector mechanisms of nonimmune mononuclear phagocytes, the HL-60 promyelocytic cell line was studied for its cytotoxic action on chicken erythrocyte target cells. HL-60 cells cultured in complete medium were found to be noncytotoxic for chicken erythrocytes in an 18-hr 51Cr-release assay. These cells have been shown to acquire several characteristics of mature macrophages upon incubation with phorbol myristate acetate (PMA), and when PMA was included in the medium during the assay, the HL-60 cells became strongly cytotoxic to the target cells in the absence of exogenous antibody, lectin, or serum complement. Freshly isolated peripheral blood monocytes also became cytotoxic in the presence of PMA, whereas peripheral blood lymphocytes and the U937 histiocytic cell line did not. Detectable target lysis was observed between 4 and 8 hr after HL-60 stimulation with PMA, and HL-60 cells prestimulated with PMA for 24 hr retained their cytotoxic activity following washing and assay in PMA-free medium. Cytotoxic HL-60 cells developed after exposure to 10(-6) to 10(-9) M PMA, and significant target cell lysis occurred at effector:target cell ratios as low as 0.5:1. The PMA-induced HL-60-mediated cytotoxic response was markedly inhibited by blockers of protein synthesis, inhibition of microfilament function, and depletion of cellular superoxide and hydrogen peroxide. Interestingly, cytotoxicity of HL-60 cells for chicken erythrocyte targets was modulated by the direct addition of certain simple saccharides to the assay in a fashion similar to that observed with spontaneously cytotoxic mononuclear cells from several vertebrate and invertebrate species. Thus, the cytolytic effector function induced in HL-60 cells by incubation with PMA presents a useful model for the study of cellular cytotoxic mechanisms as well as the mechanisms utilized by nonimmune cells in the recognition of non-self.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号