首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of S-100 protein on assembly of brain microtubule proteins in vitro   总被引:6,自引:0,他引:6  
R Donato 《FEBS letters》1983,162(2):310-313
S-100 protein inhibits the assembly of brain microtubule proteins in vitro in the presence of 10 microM free Ca2+. The S-100 effect is generally greater on the rate than on the extent of assembly, and even greater as the microtubule protein concentration decreases and the time of preincubation between S-100 and microtubule proteins before GTP addition increases, at a given S-100/tubulin dimer molar ratio. The S-100 effect is greatly enhanced in the presence of physiological concentrations of K+ and is completely reversed by EGTA.  相似文献   

2.
S-100 proteins   总被引:8,自引:0,他引:8  
R Donato 《Cell calcium》1986,7(3):123-145
S-100 is a group of closely related, small, acidic Ca2+-binding proteins (S-100a0, S-100a and S-100b, which are alpha alpha, alpha beta, and beta beta in composition, respectively). S-100 is structurally related to calmodulin and other Ca2+-binding proteins. S-100 is abundant in the brain and is contained in well defined cell types of both neuroectodermal and non-neuroectodermal origin, as well as in their neoplastic counterparts. In the mammalian brain, S-100a and S-100b are confined to glial cells, while S-100a0 is neuronal in localization. Single S-100 isoforms bind Ca2+ with nearly the same affinity. K+ antagonizes the binding of Ca2+ to high affinity sites on S-100. S-100 binds Zn2+ with high affinity. S-100 is found in a soluble and a membrane-bound form and has the ability to interact with artificial and natural membranes. S-100 has no enzymatic activity. S-100 has been involved in several activities including memory processes, regulation of diffusion of monovalent cations across membranes, modulation of the physical state of membranes, regulation of the phosphorylation of several proteins, control of the assembly-disassembly of microtubules. Some of these effects are strictly Ca2+-dependent, while other are not. S-100 is being secreted or released to the extracellular space. In some cases, this event is hormonally regulated. Several S-100 binding proteins are being described.  相似文献   

3.
At alkaline pH, Ca2+ is no longer required for S-100 proteins to inhibit the assembly and to promote the disassembly of brain microtubules in vitro, though the presence of Ca2+ significantly favors the S-100 effects. These effects are inversely related to the microtubule protein concentration and directly related to the S-100 concentration and the pH. Ca2+-independent, pH-regulated inhibition of assembly of phosphocellulose-purified tubulin by S-100 is also described. The microtubule disassembling effect of S-100 is additive to that of alkali (used to raise the pH), and S-100 further disassembles microtubules after alkalinization. Thus the larger inhibitory effect of S-100 on microtubule assembly at alkaline versus acid pH depends on both a decrease in the assembly rate and an increase in the disassembly rate. Together with previous data on this topic, the present findings indicate that S-100 proteins act on microtubule protein in vitro primarily by binding to tubulin, this event being Ca2+-regulated at a given pH, and pH-regulated at a given free Ca2+ concentration.  相似文献   

4.
S-100 proteins are a group of three 21-kilodalton, acidic, Ca2+-binding proteins of the "E-F hand" type shown to regulate several cell activities, including microtubule (MT) assembly-disassembly. We show here that S-100 proteins interact with MTs assembled from either whole microtubule protein or purified tubulin, both in the absence and in the presence of the MT-stabilizing drug taxol. Evidence for the binding of S-100 to MTs comes from both kinetic (turbidimetric) and binding studies. Kinetically, S-100 enhances the disassembly of steady-state MTs in the presence of high concentrations of colchicine or vinblastine at 10 microM free Ca2+ and disassembles taxol-stabilized MTs at high Ca2+ concentrations. Experiments performed using 125I-labeled S-100 show that S-100 binds Ca2+ independently to a single set of sites on taxol-stabilized MTs assembled from pure tubulin with an affinity of 6 x 10(-5) M and a stoichiometry of 0.15 mol of S-100/mol of polymerized tubulin. Under certain conditions, S-100 proteins also cosediment with MTs prepared by coassembly of S-100 with MTs, probably in the form of an S-100-tubulin complex. Because S-100 binds to MTs under conditions where this protein fraction does not produce observable effects on the kinetics of assembly-disassembly, e.g., in the absence of Ca2+ at pH 6.7, we conclude that the S-100 binding to MTs does not affect the stability of MTs per se, but rather creates conditions for increased sensitivity of MTs to Ca2+.  相似文献   

5.
R Donato 《Cell calcium》1985,6(4):343-361
In the presence of the usual 0.1 M Mes buffer, pH 6.7, mM free Ca2+ levels are required for half-maximal decrease in the rate and extent of brain microtubule protein (MTP) assembly in the absence of ox brain S-100, while microM free Ca2+ levels are sufficient in the presence of S-100. At the same pH 6.7, but in the presence of 0.12 M KCl, as low as 1.5 microM free Ca2+ is sufficient for S-100 to produce half-maximal reduction in the rate of assembly, while as high as 0.5 mM free Ca2+ is required in the absence of S-100. Similar results are obtained with rat brain S-100 (S-100b), indicating that single S-100 iso forms are equipotent in affecting the MTP assembly. At pH 7.5, MTPs are remarkably resistant to Ca2+ in the absence of S-100. In the presence of S-100, not only is the free Ca2+ concentration required for complete inhibition of assembly at least one order of magnitude smaller than that required in the absence of S-100, but significant S-100-dependent inhibition of assembly occurs in the absence of Ca2+. Under the two conditions where S-100 is particularly effective in inhibiting the assembly, i.e. at pH 6.7 in the presence of KCl and at pH 7.5, S-100 increases the disassembly rate even in the presence of microM Ca2+ levels. Our results suggest that the free Ca2+ concentration regulates the way S-100 disassembles microtubules (MTs): at microM Ca2+ levels, S-100 sequesters tubulin with concomitant increase in the disassembly rate; at mM Ca2+ levels, the S-100-Ca2+ complex probably interacts with MTs producing endwise disassembly.  相似文献   

6.
R Donato 《Cell calcium》1987,8(4):283-297
S-100 was shown to regulate the in vitro assembly of brain microtubule proteins (MTPs) in a Ca2+-mediated way by acting on both the nucleation and the elongation of microtubules (MTs). Here data will be shown suggesting that S-100 binds to tubulin. The binding is time-, temperature-, Ca2+-, and pH-dependent, and saturable with respect to S-100. At pH 6.75, the saturation curve is biphasic, displaying a high affinity component (dissociation constant, Kd1, approximately 0.1 microM) and a low affinity component (Kd2 approximately 3.8 microM). At pH 6.75, as the free Ca2+ concentration raises from 0 to 100 microM, the overall binding capacity increases from 0.065 to 0.66 mol S-100/mol tubulin dimer. This finding, together with the observation that the S-100 effect on MTP assembly is Ca2+-dependent at that pH, suggests that the S-100-induced inhibition of MTP assembly depends on S-100 binding to the low affinity sites on the tubulin molecule. The S-100 binding to tubulin is pH-dependent; as the pH raises from 6.75 to 8.3, both binding components are affected, the major changes consisting of an increase in the binding capacity and a decrease in the overall affinity. Moreover, as the pH raises, Ca2+ is no longer required for S-100 to bind to tubulin. S-100 also interacts with a component of whole MTPs (probably tubulin, on the basis of the above results). No S-100 binding to microtubule-associated proteins (MAPs) could be evidenced by the techniques employed in this study. On the contrary, some competition between S-100 and MAPs for binding sites or tubulin seems to occur.  相似文献   

7.
We have examined the S-100-chlorpromazine interplay at the level of brain microtubule proteins in vitro. The results indicate that in the presence of 0.12 M KCl and 10 microM free Ca2+ the inhibitory effect of S-100 on microtubule assembly is additive to that of chlorpromazine, but S-100 fails to potentiate the disassembling effect of 0.1 mM Ca2+ if added to assembled microtubule proteins after chlorpromazine and Ca2+, probably because of inhibition of S-100 by the phenothiazine. Chlorpromazine does not compete with S-100 for binding to purified tubulin.  相似文献   

8.
The ability of S-100 proteins to inhibit the assembly of brain microtubule proteins (MTPs) in the presence of microM levels of Ca2+ increases as a function of pH. This seems to be due to an increasingly larger inhibitory effect of S-100 on the nucleation and, probably, on the elongation of microtubules (MTs) as the pH raises. In the presence of microM Ca2+ levels, the ability of S-100 to disassemble MTs also increases linearly with the pH, suggesting that the larger inhibitory effect of S-100 on MTP assembly at alkaline than at acidic pH may depend on both a decrease in the assembly rate and an increase in the disassembly rate. Also, S-100 inhibits the assembly of phosphocellulose-purified tubulin to a larger and larger extent as the pH raises. S-100 brings about its effect on MT assembly-disassembly probably by sequestering soluble tubulin, though additional mechanisms cannot be excluded. The present data are briefly discussed in relation to the role attributed to changes in intracellular pH in the regulation of the state of assembly of cytoplasmic MTs.  相似文献   

9.
S-100 protein absorbs to the calmodulin antagonist W-7 coupled to epoxy-activated Sepharose 6B in the presence of Ca2+ and is eluted by ethylene glycol bis(β-aminoethyl ether)-N,N′-tetraacetic acid buffer. S-100a and S-100b were separated and isolated by Ca2+-dependent affinity chromatography on W-7 Sepharose. The Ca2+-induced conformational changes of S-100a and S-100b were examined using circular dichroism, ultraviolet difference spectra, and a fluorescence probe. Differences in Ca2+-dependent conformational changes between S-100a and S-100b became apparent. Circular dichroism studies revealed that both S-100a and S-100b undergo a conformational change upon binding of Ca2+ in the aromatic and far-uv range. In the presence or absence of Ca2+, the aromatic CD spectrum of S-100a differed completely from that of S-100b, possibly due to the single tryptophan residue of S-100a. Far-uv studies indicate that α-helical contents of both S-100a and S-100b decreased with addition of Ca2+. Ca2+-induced conformational changes of S-100a and S-100b were also detected by uv difference spectra. The spectrum of S-100a also differed from that of S-100b. Fluorescence studies using 2-p-toluidinylnaphthalene-6-sulfonate (TNS), a hydrophobic probe for protein, revealed a slight difference in conformational changes of these two components. The interaction of TNS and S-100b was observed with concentrations above 3 μm Ca2+; on the other hand, S-100a required concentrations above 8 μm. This finding was supported by the difference in the binding affinities of S-100a and S-100b to the W-7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide)-Sepharose column; both S-100a and S-100b bound the column in the presence of Ca2+ but S-100a was eluted prior to S-100b. These results suggest that S-100a and S-100b differ in their dependence on Ca2+ and that the affinity-chromatographic separation of S-100a from S-100b on the W-7-Sepharose column makes feasible a rapid purification of these two components.  相似文献   

10.
Chlorpromazine (CPZ) induces in S-100 conformational changes resulting in the exposure of titratable SH groups of the protein to the solvent. This effect is even greater in the presence of Mg2+ +/- Ca2+. S-100 possesses binding sites for CPZ. The binding of CPZ to 3 microM S-100 is half-saturated by 0.18 microM CPZ in the presence of Mg2+ plus Ca2+ and by 0.24 microM CPZ in the presence of Mg2+ plus EGTA. The extent of the binding is greater in the presence of Ca2+ than in the presence of EGTA, especially at low CPZ concentrations.  相似文献   

11.
R. Donato   《Cell calcium》1991,12(10)
The S-100 protein family constitutes a subgroup of Ca2+-binding proteins of the EF-hand type comprising three dimeric isoforms, S-100a0, S-100a and S-100b, plus a number of structurally related proteins displaying 28–55% homology with S-100 subunits. S-100 protein was discovered in 1965; yet, its biological functions have not been fully elucidated. The present report will review the putative biological roles of S-100 protein. Both intracellular and extracellular roles have been proposed for S-100 protein. Within cells, S-100 protein has been reported to regulate protein phosphorylation, ATPase, adenylate cyclase, and aldolase activities and Ca2+-induced Ca2+ release. Also, cytoskeletal systems, namely microtubules and microfilaments have been reported to be regulated by the protein in the presence of Ca2+. Some molecular targets of S-100 protein within cells, have been identified. This is the case with microtubule proteins, caldesmon, and a brain aldolase. S-100 protein has been reported to be secreted; extracellular S-100 protein can stimulate neuronal differentiation, glial proliferation, and prolactin secretion. However, the mechanisms by which S-100 is secreted and stimulates the above processes are largely unknown. Future research should characterize these latter aspects of S-100 biology and find out the linkage between its intracellular effects and its extracellular activities.  相似文献   

12.
We have recently shown that S-100b protein interacts with the polar surface of cardiolipin vesicles [6]. This interaction produces changes in the secondary structure of S-100b as well as changes in the structural organization of cardiolipin vesicles. We report here on the effects of S-100b on cardiolipin vesicles as investigated by turbidity, terbium-dipicolinate fluorescence and freeze-fracture. Experiments were carried out in the absence and in the presence of Ca2+. In the absence of Ca2+ (0.1 mM EDTA), S-100b favors the aggregation and fusion of vesicles to some extent. Under these conditions, electron microscope analyses reveal the presence of fused vesicles along with particles similar to those observed in protein reconstituted systems or to lipid particles observed during fusional processes. In the presence of Ca2+, S-100b counteracts the Ca2(+)-dependent tendency of vesicles to aggregate and fuse. Under these conditions, bilayer phases along with hexagonal phases can be observed by electron microscopy. The latter effects of S-100b are not due to chelation of Ca2+ because of the relative concentrations of S-100b and Ca2+ under our experimental conditions and since much larger concentrations of EDTA are required to produce the S-100b effects. We propose that the dimeric nature of S-100b plays a major role in these events. In the absence of Ca2+, the S-100b molecules probably cross-link adjacent vesicles, one subunit contacting one vesicle and the other subunit contacting another vesicle through electrostatic bonds. In the presence of Ca2+, due to the large changes occurring in the conformation of the protein (which loses about 52% of its alpha-helical content), S-100b associates strongly with the polar surface of individual vesicles, thus generating some kind of physical barrier to aggregation and fusion of vesicles.  相似文献   

13.
The Triton X-100-resistant residue of brain membranes contains appreciable amounts of S-100 proteins. This fraction of S-100 can be solubilized by high concentrations of EDTA plus or minus high concentrations of KCl. Whereas KCl (0.6 M) extracts the detergent-resistant S-100, NaCl (1 M) does not. Endogenous Ca2+ is required and is sufficient for S-100 to remain associated with the detergent-resistant residue. However, 0.6 M KCl extracts a further fraction of Triton X-100-resistant S-100. In contrast, the Triton X-100-extractable fraction of S-100 resists the action of EDTA. These data suggest that Ca2+ regulates the extent of association of S-100 with Triton X-100-resistant components in brain membranes, whereas the association of S-100 with the lipid bilayer of brain membranes and/or with some intrinsic membrane proteins is less Ca2+-regulated. Several S-100-binding proteins are identified in the detergent-resistant residue of brain membranes by an overlay procedure.  相似文献   

14.
Interactions of trifluoperazine (TFP) with S100 proteins, EF-hand type Ca2+-binding proteins, in the presence of Ca2+ and Zn2+ were studied with induced circular dichroism (CD) and fluorescence spectra. The positive CD bands of TFP were induced at around 265 nm by adding either S100a or S100a0 protein in the presence of Ca2+. No CD band of TFP was, however, induced by adding S100b protein in the presence of Ca2+. Addition of Zn2+ to the TFP/S100 protein solutions did not induce any CD band at all. The fluorescence intensity of 2-p-toluidinylnaphthalene 6-sulfonate (TNS) bound to S100a or S100a0 protein decreased by adding TFP in the presence of Ca2+, while that bound to S100b protein decreased by adding TFP in the presence of Zn2+, indicating that TFP binds to S100a protein and S100a0 protein in a Ca2+-dependent manner and to S100b protein in a Zn2+-dependent manner. From these results together with other experimental findings it was suggested that (1) TFP binds to S100a protein and S100a0 protein in the presence of Ca2+, with half-saturation points of 18 and 3 microM, respectively, (2) TFP binds to S100b protein only in the presence of Zn2+, (3) alpha-subunit of S100 protein binds to TFP specifically in a Ca2+-dependent manner and beta-subunit in a Zn2+-dependent manner.  相似文献   

15.
Microtubules formed in vitro in the presence of S-100 proteins and micromolar Ca2+ concentrations are fewer in number and longer than those formed in the presence of Ca2+ alone. Moreover, microtubules growing after addition of microtubule fragments to a microtubule protein solution in the presence of S-100 are shorter than those growing in its absence. These data lend support to previous results of kinetic studies indicating that S-100 interferes with both the nucleation and the elongation of microtubules in vitro.  相似文献   

16.
The isomeric forms of bovine S-100a and S-100b have been shown to stimulate ATPase activities in fractions enriched in myelin and mitochondria isolated from the Gerbil brain and for S-100b more effectively than for calmodulin in erythrocytes or skeletal muscle. In the presence of Ca2+, S-100a produced a slight increase of ATPase activity in the mitochondrial fraction. However, S-100b, with or without Ca2+ and Zn2+ respectively, had no effect on the ATPase activity in mitochondria of the Gerbil liver. The observations may indicate a second messenger role for S-100b in the presence of Zn2+ in the Schwann cell.  相似文献   

17.
Interaction of smooth muscle caldesmon with S-100 protein   总被引:1,自引:0,他引:1  
The interaction of caldesmon with certain Ca-binding proteins was investigated by means of electrophoresis under non-denaturating conditions. In the presence of Ca2+ calmodulin, troponin C and S-100 protein form a complex with caldesmon. No complex formation takes place in the absence of Ca2+. Lactalbumin and pike parvalbumin (pI4.2) do not interact with caldesmon independently of Ca-concentration. Both S-100 protein and calmodulin effectively inhibit phosphorylation of caldesmon by Ca-phospholipid-dependent protein kinase. At low ionic strength S-100 protein reverses the inhibitory action of caldesmon on the skeletal muscle acto-heavy meromyosin ATPase more effectively than calmodulin. It is supposed that in certain tissues and cell compartments the proteins belonging to the S-100 family are able to substitute for calmodulin in the caldesmon-dependent regulation of actin and myosin interaction.  相似文献   

18.
Molecular Interaction of S-100 Proteins with Microtubule Proteins In Vitro   总被引:4,自引:0,他引:4  
Several procedures were employed to examine the in vitro interaction between S-100 proteins and microtubule proteins. Binding of S-100 to tau factors was observed under all experimental conditions. S-100 binding to microtubule-associated protein 2 (MAP2) was best detected by exposing nitrocellulose-immobilized MAP2 or MAPs to either 125I-labeled S-100 or biotinylated S-100. S-100 binding to tubulin was detected when the two protein fractions were first incubated with each other followed by exposure to the bifunctional cross-linker disuccinimidylsuberate, and then separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transfered onto nitrocellulose paper. By this procedure, complex formation between S-100 and tubulin, as well as between S-100 and a relatively low-molecular-weight MAP, was evidenced by immunoblotting using an anti-S-100 antiserum. Alternatively, complex formation between biotinylated S-100 and either tubulin or MAPs was visualized by means of avidin-peroxidase, after SDS-PAGE of the complex mixtures and transfer of the separated proteins onto nitrocellulose. The interaction between S-100 and tubulin was strictly Ca2+ dependent, and resistant to high concentrations of KCl, colchicine, or vinblastine.  相似文献   

19.
We have investigated the effect of the b isoform of S-100 proteins on adenylate cyclase activity of rat skeletal muscle. S-100b inhibits the adenylate cyclase activity in the presence of Mg2+ (5.0–50 mM), while it activates the same enzyme in the presence of Ca2+ (0.1–1.0 mM) dose-dependently in both cases. S-100b counteracts the stimulatory effect of NaF on adenylate cyclase in the presence of Mg2+ and the inhibitory effect of RMI 12330 A in the presence of Ca2+.  相似文献   

20.
We have demonstrated calcium-dependent hydrophobic interactions among calmodulin, S-100 protein and troponin-C and a homologous series of omega-aminoalkyl-agaroses. The three Ca2+-binding proteins were retained on the column of agarose substituted with omega- aminooctyl or even longer with alkylamine, in the presence of Ca2+ and 0.15 M NaCl. As these proteins were not retained on the column with shorter alkylamine 'arms' (N = 2, 4), they are probably successively absorbed with a higher affinity to the hydrophobic agarose column. Calmodulin and S-100 protein were eluted from the aminoocytl -agarose column with 1 mM EGTA in the presence of 0.15 M NaCl and the elution of troponin-C was Ca2+-independently carried out with 0.3 M NaCl. On the other hand, S-100 and troponin-C were eluted Ca2+-dependently from aminodecyl -agarose in the presence of 1 M NaCl and half the amount of the calmodulin applied was eluted with 1 M NaCl. As there are obvious differences among the three Ca2+-binding proteins with regard to chromatographic behavior on omega-aminoalkyl-agarose columns, our results suggest that these three proteins expose different hydrophobic regions following Ca2+-induced conformational changes and, if so, such would explain the interaction with aminoalkyl-agaroses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号