首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accumulation of DNA strand breaks and activation of ADP-ribosyltransferase (ADPRT) have recently been associated with cellular differentiation. Murine erythroleukemia (MEL) cells undergo erythropoietic differentiation when exposed to dimethyl sulfoxide (Me2SO) and several studies have suggested that DNA strand scission induced by this agent is a prerequisite for expression of the differentiated phenotype. Me2SO induction of MEL cells has also been associated with increases in ADPRT activity in one study, but not in another. We have monitored the effects of Me2SO on DNA strand breaks in preformed and replicating MEL cell DNA. The results clearly demonstrate that DNA fragmentation is not detectable during Me2SO induction of MEL differentiation, even in the presence of 3-aminobenzamide, an inhibitor of ADPRT. Further, these results are consistent with an absence of detectable changes in both endogenous and total potential ADPRT activity during Me2SO-induced MEL differentiation. These findings would argue against Me2SO induction of DNA strand scission and ADPRT in MEL cells undergoing differentiation.  相似文献   

2.
We have studied the activity of the Na+/H+ exchanger during dimethyl sulfoxide (Me2SO)-induced maturation of the human promyelocytic leukemia cell line HL-60. 22Na uptake was measured in cells preloaded with Li+ or NH+4 in order to specifically activate the Na+/H+ exchanger. Measurement of the rate of uptake as a function of sodium concentration revealed a decrease in Km for Na+ from 38 +/- 3 to 13 +/- 1 mM after 20-24-h treatment with Me2SO. Vmax was not changed significantly. Inhibition of the exchanger by dimethylamiloride (DMA) and by acidic external pH was similar in treated and untreated cells. Thus it is unlikely that the Na+ binding site is altered. A change, however, was observed in the regulation of the exchanger by intracellular pH. In control cells maximal stimulation of the Na+ uptake was observed when the intracellular pH decreased from 7.25 to 7.00. In Me2SO-treated cells the 22Na uptake at intracellular pH 7.00 was greater than in the control and continued to increase as the intracellular pH was adjusted below 7.00, down to 6.75. This suggests that the Na+/H+ exchanger in Me2SO-treated cells is altered structurally in its allosteric H+ binding site. The appearance of this modified exchanger preceded by a period of days the appearance of a functional property characteristic of mature granulocytes, that is, the capability to produce superoxide, suggesting that the modified exchanger may be required for the expression of the mature phenotype. A second modification, a decrease in the Vmax of the 22Na uptake, occurred after 2 days treatment with Me2SO. This reduction may reflect a decrease in the number of functioning exchangers per cell.  相似文献   

3.
Cultured Friend cells can be induced by dimethyl sulfoxide (Me2SO) and several other agents to mature along the erythroid pathway. Evidence has been presented that an increase in Ca2+ influx is an early and necessary prelude to the commitment to maturation by these cells (Levenson, R., Housman, D., and Cantley, L. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 5948-5952). The simplest hypothesis supporting all the available data is that Me2SO and other inducers elevate the cytosolic Ca2+ concentration. We have now measured cytosolic Ca2+ using the fluorescent indicator quin-2, and find, contrary to expectation, a small decrease upon treatment of cells with Me2SO. Cytosolic Ca2+ was increased by raising the Ca2+ in the medium, but was not dramatically altered by addition of ouabain or monensin or by incubation in Na+-free medium. Measurement of total cell Ca2+ by a triple-labeling technique using 3H2O and 125I-albumin to determine cell water and extracellular space, respectively, revealed no significant change upon treatment with Me2SO for up to 40 h. A decrease in the initial rate of 45Ca2+ influx was observed in Me2SO-treated cells, when measured at 4 degrees C. These data do not support the hypothesis that an increase in cell Ca2+ is necessary for the induction of Friend cell differentiation or that Na+/Ca2+ exchange is a significant regulator of cytosolic Ca2+ in Friend cells.  相似文献   

4.
5.
6.
To examine the regulatory mechanisms of proliferation and maturation in neutrophilic lineage cells, we have tried to sort dimethyl sulfoxide (Me(2)SO)-treated HL-60 cells into transferrin receptor (Trf-R) positive (Trf-R(+)) and negative (Trf-R(-)) cells. Differentiated Trf-R(-) cells expressed more formyl-Met-Leu-Phe receptor (fMLP-receptor) and ability of O-(2) genaration, as markers of differentiation, than Trf-R(+) cells, and Trf-R(-) cell differentiation was markedly accelerated by the incubation with granulocyte colony stimulating factor (G-CSF). On the other hand, Trf-R(+) cells had a tendency to proliferate rather than differentiate, and proliferation was enhanced by G-CSF. These results indicate that Trf-R expression coincides with the commitment to proliferate or differentiate of HL-60 cells, and G-CSF accelerates these commitments. G-CSF-induced tyrosine phosphorylation of STAT 3 in Trf-R(-) cells much more than in Trf-R(+) cells. Protein 70 S6 kinase expression was higher in Trf-R(+) cells than in Trf-R(-) cells. Furthermore, p70 S6 kinase was hyperphosphorylated by G-CSF in Trf-R(+) cells, but not in Trf-R(-) cells. Rapamycin, an inhibitor of p70 S6 kinase activity, inhibited G-CSF-dependent proliferation of Trf-R(+) cells and increased fMLP-R expression on these cells. These results suggest that commitment to proliferation and differentiation in Me(2)SO-treated HL-60 cells is preprogrammed and correlated with Trf-R expression, and G-CSF potentiates the cellular commitment. STAT 3 may promote differentiation of Me(2)SO-treated HL-60 cells into neutrophils, while p70 S6 kinase may promote proliferation and negatively regulate neutrophilic differentiation.  相似文献   

7.
8.
Studies are described examining further the decline in folate analogue influx mediated by the one-carbon reduced-folate transport system in HL-60 cells following induction of maturation by cytodifferentiation agents. To facilitate the investigation of the underlying basis of this phenomenon, we derived a variant (HL-60/LCV) with 4-5-fold elevated influx capacity (Vmax) for folate analogues. A commensurate increase in the putative transporter for this system was documented by affinity labeling of these cells with N-hydroxysuccinimide-[3H]aminopterin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the affinity labeled plasma membrane in HL-60/LCV cells delineated a protein peak at Mr = 75,000-80,000. This was substantially greater than the analogous transporter (Mr = 45,000-47,000) we had delineated (Yang, C.-H., Sirotnak, F.M., and Mines, L.S. (1988) J. Biol. Chem. 263, 9703-9709) with the same methodology in the L1210 cell plasma membrane. In addition, the rate of translocation of the Mr = 75,000-80,000 transporter in HL-60 and HL-60/LCV cells was 2-fold lower than the rate of translocation determined for the Mr = 45,000-47,000 transporter in L1210 cells. During induced maturation of HL-60/LCV cells toward the granulocyte pathway, [3H]methotrexate (MTX) influx capacity and the amount of the affinity labeled transporter decreased rapidly in a parallel fashion. The decrease in [3H]MTX influx and in affinity labeling and in the amount of the Mr = 75,000-80,000 transporter was 5-fold following exposure to 210 mM dimethyl sulfoxide (Me2SO) for 5 days during growth in culture. Moreover, during cycloheximide treatment, the decay in [3H]MTX influx at 37 degrees C and in amount of affinity labeled transporter was the same (t1/2 = 144-155 min) for both control and Me2SO-treated HL-60/LCV cells. These results, which reveal no difference in metabolic turnover for control and Me2SO-treated cells, suggest that the decline in folate analogue influx in HL-60/LCV influx cells is a very early event in the program of differentiation and probably occurs by down-regulation of synthesis of the transporter for the one-carbon reduced-folate transport system.  相似文献   

9.
Dimethyl sulfoxide affects the selection of splice sites   总被引:4,自引:0,他引:4  
Depending on the cell lines and cell types, dimethyl sulfoxide (Me2SO) can induce or block cell differentiation and apoptosis. Although Me2SO treatment alters many levels of gene expression, the molecular processes that are directly affected by Me2SO have not been clearly identified. Here, we report that Me2SO affects splice site selection on model pre-mRNAs incubated in a nuclear extract prepared from HeLa cells. A shift toward the proximal pair of splice sites was observed on pre-mRNAs carrying competing 5'-splice sites or competing 3'-splice sites. Because the activity of recombinant hnRNP A1 protein was similar when added to extracts containing or lacking Me2SO, the activity of endogenous A1 proteins is probably not affected by Me2SO. Notably, in a manner reminiscent of SR proteins, Me2SO activated splicing in a HeLa S100 extract. Moreover, the activity of recombinant SR proteins in splice site selection in vitro was improved by Me2SO. Polar solvents like DMF and formamide similarly modulated splice site selection in vitro but formamide did not activate a HeLa S100 extract. We propose that Me2SO improves ionic interactions between splicing factors that contain RS-domains. The direct impact of Me2SO on alternative splicing may explain, at least in part, the different and sometimes opposite effects of Me2SO on cell differentiation and apoptosis.  相似文献   

10.
Friend erythroleukemic cells were induced to differentiate by dimethylsulfoxide (Me2SO) in the absence or presence of the tumor promoter 12-O-tetradecanoyl-phorbol 13-acetate. The effects of the latter on the molecular parameters related to globin mRNA metabolism were examined. When differentiation was scored by benzidine staining, it had an inhibitory effect on Me2SO-treated cells. On the other hand, when differentiation was followed by determination of globin mRNA accumulation, it had a pleiotropic effect on Me2SO-treated cells. At the early phase of differentiation (2--3 days) the rate of globin mRNA accumulation was higher in the promoter-treated cells than in the control. This unexpectedly high level of accumulation was followed by a sharp reduction and most of the globin RNA sequences disappeared at later stages of differentiation (days 4--5). The reduction can be related to the effect of the promoter on the stability of globin RNA in the cytoplasm which was reduced from a half-life of 16 h to that of 8 h only. Other parameters, such as the rate of globin mRNA synthesis and its capability to serve as a template for cell-free protein synthesis were not affected by treatment with the promoter throughout the differentiation process.  相似文献   

11.
Twenty-four lambs (Ovis aries) were used in a 45-day finishing study to evaluate the effects of feeding diets high in linoleic acid (C(18:2), omega-6) on liver lipid composition and on lipogenic enzyme activities in subcellular fractions of liver. Lambs were fed either a 5% safflower oil (SO, high linoleic acid) supplemented diet or a control diet without added oil. SO feeding caused a reduction in the amount of serum and liver triacylglycerols and cholesterol, whereas the level of phospholipids in both tissues was hardly affected. In liver of SO-treated lambs an increase in the levels of C(18:2) and arachidonic acid (C(20:4), omega-6), together with a simultaneous decrease of saturated fatty acids, was observed. In comparison to rat liver, rather low activities of enzymes in the pathway for de novo fatty acid synthesis, i.e. acetyl-CoA carboxylase and fatty acid synthase, were found in lamb-liver cytosol. Both enzyme activities, as well as those of the NADPH-furnishing enzymes, were significantly reduced by SO feeding. In contrast, microsomal and especially mitochondrial fatty acid chain elongation activity, the latter being much higher than that of rat liver, were significantly increased in SO-treated lambs. In these animals, a stimulation of triangle up(9)-desaturase activity was observed in liver microsomes.  相似文献   

12.
We have investigated by electrophoretic mobility shift assay (EMSA) the level of GATA-1 DNA-binding activity in nuclear extracts prepared from the human erythroleukaemic cell line, K562, after erythroid induction by hemin, sodium butyrate (NaB) or Trichostatin A or treatment with N -acetylcysteine (NAC). Relative to extract from untreated cells, GATA-1 binding activity increased markedly in all cases. However, immunoblot analysis revealed unchanged levels of GATA-1 protein after induction. Incubation of induced but not uninduced K562 extracts with phosphatase prior to EMSA weakened the binding activity, suggesting that the increase in GATA-1 binding following induction of K562 cells was a consequence of phosphorylation. When the mouse erythroleukaemic cell line MEL was induced with dimethylsulphoxide (DMSO), NaB or NAC, GATA-1 binding activity fell with DMSO, rose significantly with NaB and remained at about the same level in NAC-induced cells. In this case immunoblotting revealed that GATA-1 protein levels were in accord with the EMSA data. The DNA-binding activities of induced and uninduced MEL cell nuclear extracts were decreased by incubation with phosphatase, showing that phosphoryl-ation and DNA binding of GATA-1 are already optimalin these cells. The DNA-binding activity of affinity-purified GATA-1 from MEL cells was also reduced by phosphatase treatment, showing that phosphorylation/dephosphorylation is directly affecting the factor. Furthermore, when a comparison was made by EMSA of nuclear extracts prepared from K562 and MEL cells untreated or incubated with okadaic acid, a phosphatase inhibitor, GATA-1 binding was seen to increase with K562 cells, whereas with MEL cells there was no change in GATA-1 binding. Overall the results suggest that the level of GATA-1 phosphorylation increases after the induction of K562, but not MEL cells, where GATA-1 is already highly phosphorylated. Furthermore, phosphorylation increases the binding affinity of GATA-1 for a canonical binding site.  相似文献   

13.
Poly(ADP-ribosyl)ation is a cellular response to DNA strand breaks by which a large array of proteins becomes covalently modified for a brief period during the lifetime of the DNA breaks. Inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide after many types of DNA damage leads to a marked increase in DNA strand breakage, repair replication, cytogenetic damage, mutagenesis, and cell killing. It has been hypothesized that poly(ADP-ribose) polymerase may modify potentially degradative endogenous nucleases that can reduce cellular viability. Thus, in the presence of DNA strand breakage, the polymer would bind these enzymes to inhibit their activity. When synthesis of the polymerase is inhibited, the enzymes would act randomly to produce nonspecific damage in the DNA. We tested this hypothesis by electroporating restriction enzymes into human cells containing the shuttle vector pHAZE. Restriction enzymes cleave at specific recognition sequences in the lacZ target gene of pHAZE, and mutations result from rejoining errors at the cleavage sites. If the hypothesis were correct, enzyme-treated cells cultured with 3-aminobenzamide to inhibit synthesis of poly(ADP-ribose) polymers would result in a significant increase in mutations outside the restriction enzyme sites. The spectrum of mutations observed after electroporation of PvuII (which produces blunt-end double-strand breaks) or PvuI (which produces cohesive-end double-strand breaks) was similar in untreated and 3-aminobenzamide-treated cells. Thus, our results do not support the hypothesis that the increase in damage observed when poly(ADP-ribosyl)ation is inhibited is due to a chaotic, nonspecific attack on DNA by endogenous cellular nucleases.  相似文献   

14.
A transport system for D-glucose was found in a Friend erythroleukemia cell line, T-3-C1-2-O and was characterized as a facilitated diffusion system. D-Glucose transport activity showed a half-saturation concentration of 2.2 mM and was inhibited by mercuric ions, cytochalasin B, phloretin, and stilbestrol, but was not strongly inhibited by phloridzin. Transport of 3-O-methyl-D-glucose was faster than D-glucose and the intracellular concentration of the sugar was found to reach the concentration in the assay medium. The treatment of cells with a differentiation-inducing reagent, dimethylsulfoxide(Me2SO), for 24 h caused a marked decrease in glucose transport activity due to a decrease in Vmax. In an induction-insensitive Friend cell line, T-3-K-1, D-glucose transport activity was low in untreated cells and Me2SO treatment did not cause a significant decrease in transport activity. The results obtained in this study indicate that the decrease in glucose transport activity is not due to the direct effect of Me2SO on transport activity, but is associated with the induction of differentiation. By immunoblotting cell lysates of T-3-C1-2-O cells using antibody to human erythrocyte glucose transporter, a single major band having a molecular weight of 52,000 was detected, which may be a glucose transporter in Friend cells.  相似文献   

15.
Renal cortical slices were frozen to various subzero temperatures after treatment with 2.1 M of one of three cryoprotectants, dimethyl sulfoxide (Me2SO), ethylene glycol, or glycerol. The effects on tissue [K+]/[Na+] of cooling to these temperatures were tested (using identical procedure times, cooling rates, and warming rates) by holding the slices at each experimental temperature for appropriate periods of time prior to rewarming. The effects of the holding time were assessed by comparison with slices which were cooled and rewarmed with no intermediate holding time. Slices treated with ethylene glycol or glycerol were found to exhibit a continuous decrease in [K+]/[Na+] with lowered temperatures, in contrast to those treated with Me2SO. Slices treated with Me2SO actually experienced a continuous increase in [K+]/[Na+] with lowered temperature (-12 to -33 degrees C). Me2SO does exhibit toxic effects at subzero temperatures. Adverse effects of holding time on viability are seen for Me2SO-treated slices at higher subzero temperatures. These effects were alleviated as the temperature is reduced, suggesting that temperature has a greater effect on survival of renal cortical tissue than Me2SO concentration. However, the toxicity observed at higher subzero temperatures is expected to be of importance, particularly for slowly cooled tissues which are exposed to these temperatures for relatively long periods of time.  相似文献   

16.
Botulinum ADP-ribosyltransferase C3 (C3 exoenzyme) was purified to homogeneity and added to cultured rat pheochromocytoma PC-12 cells. Incubation with this exoenzyme caused inhibition of cell growth and induced neurites as well as acetylcholine esterase in these cells. These changes were dependent on the amount of the enzyme added to the culture, which correlated with the in situ ADP-ribosylation of the rho/rac proteins in the cells. Preincubation with a specific anti-C3 exoenzyme monoclonal antibody inhibited both the ADP-ribosyltransferase activity and the neurite-inducing activity of the enzyme preparation. These results suggest that C3 exoenzyme affected the cellular function of the rho/rac proteins by ADP-ribosylation to induce these changes in the cells.  相似文献   

17.
Sanggenon O (SO) is a Diels-Alder type adduct extracted from Morus alba, which has been used for its anti-inflammatory action in the Oriental medicine. However, whether it has regulatory effect on human cancer cell proliferation and what the underlying mechanism remains unknown. Here, we found that SO could significantly inhibit the growth and proliferation of A549 cells and induce its pro-apoptotic action through a caspase-dependent pathway. It could also impair the mitochondria which can be reflected by mitochondrial membrane permeabilization. Besides, SQSTM1 up-regulation and autophagic flux measurement demonstrated that exposure to SO led to autophagosome accumulation, which plays a protective role in SO-treated cells. In addition, knocking down of LC3B increased SO triggered apoptotic cell rates. These results indicated that SO has great potential as a promising candidate combined with autophagy inhibitor for the treatment of NSCLC. In conclusion, our results identified a novel mechanism by which SO exerts potent anticancer activity.  相似文献   

18.
Yang H  Zhao H  Acker JP  Liu JZ  Akabutu J  McGann LE 《Cryobiology》2005,51(2):165-175
BACKGROUND: The effect of dimethyl sulfoxide (Me2SO) on enumeration of post-thaw CD45+ and CD34+ cells of umbilical cord blood (HPC-C) and mobilized peripheral blood (HPC-A) has not been systematically studied. METHODS: Cells from leukapheresis products from multiple myeloma patients and umbilical cord blood cells were suspended in 1, 2, 5, or 10% Me2SO for 20 min at 22 degrees C. Cells suspended in Me2SO were then immediately assessed or assessed following removal of Me2SO. In other samples, cells were suspended in 10% Me2SO, cooled slowly to -60 degrees C, stored at -150 degrees C for 48 h, then thawed. The thawed cells in 10% Me2SO were diluted to 1, 2, 5, or 10% Me2SO, held for 20 min at 22 degrees C and then immediately assessed or assessed after the removal of Me2SO. CD34+ cell viability was determined using a single platform flow cytometric absolute CD34+ cell count technique incorporating 7-AAD. RESULTS: The results indicate that after cryopreservation neither recovery of CD34+ cells nor viability of CD45+ and CD34+ cells from both post-thaw HPC-A and HPC-C were a function of the concentration of Me2SO. Without cryopreservation, when Me2SO is present recovery and viability of HPC-C CD34+ cells exposed to 10% Me2SO but not CD45+ cells were significantly decreased. Removing Me2SO by centrifugation significantly decreased the viability and recovery of CD34+ cells in both HPC-A and HPC-C before and after cryopreservation. DISCUSSION: To reflect the actual number of CD45+ cells and CD34+ cells infused into a patient, these results indicate that removal of Me2SO for assessment of CD34+ cell viability should only be performed if the HPC are infused after washing to remove Me2SO.  相似文献   

19.
Papain activity in a buffer containing Me2SO was studied using fluorogenic substrates. It was found that the number of active sites of papain decreases with increasing Me2SO concentration whereas the incubation time, in a buffer containing 3% Me2SO does not affect the number of active sites. However, an increase of papain incubation time in the buffer with 3% Me2SO decreased the initial rate of hydrolysis of Z-Phe-Arg-Amc as well as Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans. Moreover, an increase of Me2SO concentration in working buffer decreased the initial rate of papain-catalysed hydrolysis of both substrates. A rapid decrease of the initial rate (by up to 30%) was observed between 1 and 2% Me2SO. Application of the Michaelis-Menten equation revealed that at the higher Me2SO concentrations the apparent values of k(cat)/Km decreased as a result of Km increase and kcat decrease. However, Me2SO changed the substrate binding process more effectively (Km) than the rate of catalysis k(cat).  相似文献   

20.
F Iwasa  S Sassa    A Kappas 《The Biochemical journal》1989,259(2):605-607
The effects of acute-phase inducers and dimethyl sulphoxide (Me2SO) on delta-aminolaevulinate (ALA) synthase in HepG2 cells were examined. Treatment of cells with Me2SO resulted in a significant increase in ALA synthase activity. Interleukin-6 increased ALA synthase activity only slightly, but it substantially potentiated the induction of ALA synthase by Me2SO. These data suggest that ALA synthase activity in liver is altered during acute-phase reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号