首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LRRC4 is a novel relatively specific gene,which displays significant down-regulation inprimary brain tumor biopsies and has the potential to suppress brain tumor growth.In this study,we inves-tigated the growth inhibitory effect of LRRC4 on tumorigencity in vivo and on cell proliferation in vitro by atetracycline-inducible expression system.Results showed that LRRC4 significantly reduced the growth andmalignant grade of xenografts arising from glioblastoma U251MG cells.Cell proliferation was markedlyinhibited after U251MG Tet-on-LRRC4 cell induction with doxycycline.Flow cytometry and Western blotanalysis demonstrated that LRRC4 mediated a delay of the cell cycle in late G_1,possibly through up-regulat-ing the expressions of p21Wafl/cip 1 and p27Kip 1 and down-regulating the expressions of cyclin-dependentkinase 2,retinoblastoma protein and epidermal growth factor receptors.Together,these findings provideclues to the function of LRRC4 as a negative regulator of cell growth and underscore a link between theabove-mentioned cyclins,cyclin-associated molecules and tumorigenicity.  相似文献   

2.
Zhang Q  Wang J  Fan S  Wang L  Cao L  Tang K  Peng C  Li Z  Li W  Gan K  Liu Z  Li X  Shen S  Li G 《FEBS letters》2005,579(17):3674-3682
LRRC4, a novel member of LRR superfamily thought to be involved in development and tumorigenesis of the nervous tissue, has the potential to suppress tumorigenesis and cell proliferation of U251MG cells. This study aimed at revealing the correlation between expression of LRRC4 and the maintenance of normal function and tumorigenesis suppression within the central nervous system. We systematically analyzed the expression and tissue distributions of the gene in tissues. Results showed that LRRC4 expression was limited to normal adult brain, both in human and in mouse, and exhibited a development-regulated pattern, but was down-regulated in brain tumor tissues and U251MG cell line. Furthermore, dynamic alterations in gene expression associated with cell cycle progression were investigated by using Tet-on system. Results showed that LRRC4 induced a cell cycle delay at the late G1 phase, probably through the alteration of the expression of different cell cycle regulating proteins responsible for mediating G1-S progression, such as p21(Waf1/Cip1) and p27(Kip1), Cdk2 and PCNA, p-ERK1/2. These findings suggest that LRRC4 may play an important role in maintaining normal function and suppressing tumorigenesis in the central nervous system.  相似文献   

3.
LRRC4基因是候选的脑胶质瘤抑制基因,其细胞外区域含有一个保守的LRR和一个IgC2 结构域.本研究结合生物信息学分析,通过一步PCR法构建了不同结构域缺失的突变体(pc ΔLRR, pcΔIgC2或pcΔTm).并将全长LRRC4(pcLRRC4)和各突变体转染至U251细胞,构建了稳定表达的U251细胞系.通过MTT,软琼脂集落形成及Transwell体外侵袭模型检测发现,全长LRRC4能够抑制U251细胞的生长和侵袭;LRR结构域缺失的突变体不再抑制U251细胞的生长和侵袭;而IgC2或Tm区缺失的突变体仍然可以抑制U251细胞的生长和侵袭.该结果表明,LRRC4抑制U251细胞的生长和侵袭依赖于它的LRR结构域,而不是IgC2或Tm结构域.  相似文献   

4.
LRRC4是一个在脑相对特异性表达的富亮氨酸重复超家族新成员,在神经胶质瘤表达明显下调或缺失且具有抑制脑胶质瘤细胞生长的潜能. 利用 Tet-on 基因表达系统,经过两轮转染,先后将调控质粒 pTet-on 和表达质粒 pTRE-2hyg-LRRC4 转染 U251 细胞系,分别用 G418 和潮霉素 Hygromycin 进行两次筛选. 在第一轮挑取的 80 个克隆中,利用 pTRE-2hyg-luciferase 报告基因进行最佳的低背景高表达的 pTet-on 细胞克隆筛选,在通过量效关系和动力学检测筛选的最佳克隆基础上,再进行 pTRE-2hyg-LRRC4 的转染,并通过 RT-PCR 和 RNA 印迹检测,成功获得了两个具有良好诱导性 Tet 调控的 LRRC4 双稳定表达细胞系,为进一步阐明 LRRC4 在脑胶质瘤发生发展中的作用,提供有利的研究基础和理想的实验平台.  相似文献   

5.
LRRC4 is a tumor suppressor of glioma, and it is epigenetically inactivated commonly in glioma. Our previous study has shown that induction of LRRC4 expression inhibits the proliferation of glioma cells. However, little is known about the mechanisms underlying the action of LRRC4 in glioma cells. We employed two-dimensional fluorescence differential gel electrophoresis (2-D DIGE) and MALDI -TOF/TOF-MS/MS to identify 11 differentially expressed proteins, including the significantly down-regulated STMN1 expression in the LRRC4-expressing U251 glioma cells. The levels of STMN1 expression appeared to be positively associated with the pathogenic degrees of human glioma. Furthermore, induction of LRRC4 over-expression inhibited the STMN1 expression and U251 cell proliferation in vitro, and the glioma growth in vivo. In addition, induction of LRRC4 or knockdown of STMN1 expression induced cell cycle arrest in U251 cells, which was associated with modulating the p21, cyclin D1, and cyclin B expression, and the ERK phosphorylation, and inhibiting the CDK5 and cdc2 kinase activities, but increasing the microtubulin polymerization in U251 cells. LRRC4, at least partially by down-regulating the STMN1expression, acts as a major glioma suppressor, induces cell cycle arrest and modulates the dynamic process of microtubulin, leading to the inhibition of glioma cell proliferation and growth. Potentially, modulation of LRRC4 or STMN1 expression may be useful for design of new therapies for the intervention of glioma.  相似文献   

6.
LRRC4是我室自主克隆的一个脑组织优势表达基因.前期研究结果表明,外源性LRRC4基因转染至U251细胞,可明显地抑制U251细胞的增殖、黏附、趋化和侵袭等生物学行为. 因此,LRRC4亦是一个脑胶质瘤抑制性基因.为了进一步了解LRRC4在胶质瘤发生发展中的调控作用,本研究采用荧光差异凝胶电泳(2D-DIGE)和质谱分析技术获得了LRRC4转染U251细胞的11个差异表达蛋白质,并用Western 印迹证实了U251细胞在转染LRRC4基因前后热休克蛋白27、stathmin 1和S100钙结合蛋白A11的差异表达变化. 这些差异蛋白质涉及细胞代谢、增殖、转录、信号转导等众多事件,表明LRRC4基因转染U251细胞后可能通过调控这些蛋白质的表达而参与细胞的增殖、黏附、趋化和侵袭等生物学过程.  相似文献   

7.
Gliomas take a number of different genetic routes in the progression to glioblastoma multiforme, a highly invasive variant that is mostly unresponsive to current therapies. The alpha-chemokine stromal cell-derived factor (SDF)-1 alpha binds to the seven transmembrane G-protein-coupled CXCR-4 receptor and acts to modulate cell migration and proliferation by activating multiple signal transduction pathways. Leucine-rich repeats containing 4 (LRRC4), a putative glioma suppressive gene, inhibits glioblastoma cells tumorigenesis in vivo and cell proliferation and invasion in vitro. We also previously demonstrated that LRRC4 controlled glioblastoma cells proliferation by ERK/AKT/NF-kappa B signaling pathway. In the present study, we demonstrate that CXC chemokine receptor 4 (CXCR4) is expressed in human glioblastoma U251 cell line, and that SDF-1 alpha increases the proliferation, chemotaxis, and invasion in CXCR4+ glioblastoma U251 cells through the activation of ERK1/2 and Akt. The reintroduction of LRRC4 in U251 cells inhibits the expression of CXCR4 and SDF-1 alpha/CXCR4 axis-mediated downstream intracellular pathways such as ERK1/2 and Akt leading to proliferate, chemotactic and invasive effects. Furthermore, we provide evidence for proMMP-2 activation involvement in the SDF-1 alpha/CXCR4 axis-mediated signaling pathway. LRRC4 significantly inhibits proMMP-2 activation by SDF-1 alpha/CXCR4 axis-mediated ERK1/2 and Akt signaling pathway. Collectively, these results suggest a possible important "cross-talk" between LRRC4 and SDF-1 alpha/CXCR4 axis-mediated intracellular pathways that can link signals of cell proliferation, chemotaxis and invasion in glioblastoma, and may represent a new target for development of new therapeutic strategies in glioma.  相似文献   

8.
9.
10.
LRRC4, leucine-rich repeat C4 protein, has been identified in human (GenBank accession No. AF196976), mouse (GenBank accession No. DQ177325), rat (GenBank accession No. DQ119102) and bovine (GenBank accession No. DQ 164537) with identical domains. In terms of their similarity, the genes encoding LRRC4 in these four mammalian species are orthogs and therefore correspond to the same gene entity. Based on previous research, and using in situ hybridization, we found that LRRC4 had the strongest expression in hippocampal CA1 and CA2, the granule cells of the dentate gyrus region, the mediodoral thalamic nucleus, and cerebella Purkinje cell layers. Using a P19 cell model, we also found that LRRC4 participates in the differentiation of neuron and glia cells. In addition, extracellular proteins containing both an LRR cassette and immunoglobulin domains have been shown to participate in axon guidance. Our data from neurite outgrowth assays indicated that LRRC4 promoted neurite extension of hippocampal neurons, and induced differentiation of glioblastoma U251 cells into astrocyte-like cells, confirmed by morphology observation and glial fibrillary acidic protein expression.  相似文献   

11.
Leucine-rich repeat C4 (LRRC4) has been shown to inhibit glioma cell proliferation, however, little is known about the mechanism(s) underlying the action of LRRC4. Here, we show that two glioblstoma U251 cell clones stably expressing LRRC4 were established. LRRC4 expression significantly inhibited the expression of some cytokines and their receptors determined by microarray and Western blot assays, and dramatically reduced cytokine-induced AP-1, NF-kB, and CyclinD1 activation in glioma cells. Furthermore, LRRC4 expression in glioma cells significantly downregulated spontaneous and cytokine-induced expression of K-RAS and phosphorylation of c-Raf, ERK, AKT, NF-kBp65, p70S6K, and PKC, suggesting that LRRC4 inhibited receptor tyrosine kinase (RTK) signaling pathways. Moreover, treatment with bFGF, IGF1, or IGF2 stimulated LRRC4(-/-), but not the LRRC4(+), glioma cell proliferation, indicating that LRRC4 mitigated cytokine-stimulated proliferation in glioma cells. In addition, treatment of LRRC4(-/-) glioma cells with EGF, IGF2, or PDGF promoted long distance mobilization, but induced little migration in LRRC4(+) glioma cells, suggesting that LRRC4 retarded cytokine-promoted glioma cell migration in vitro. Finally, human vessel endothelial cells (ECV304) treated with VEGF grew, aligned and formed hollow tube-like structures in vitro. In contrast, LRRC4(+) ECV304 treated with VEGF failed to form vessel-tube structures. Collectively, LRRC4 expression inhibited the expression of some growth factors, cytokines and their receptors, and the capacity of glioma cells responding to cytokine stimulation, leading to inhibition of glioma cell proliferation. Conceivably, induction of LRRC4 expression may provide new intervention for human glioma in the clinic.  相似文献   

12.
13.
This study is designed to examine the radiosensitizing effects of coexpression of doublecortin (DCX) and secreted protein and rich in cysteine (SPARC). Previously, we showed that downregulation of SPARC by small interfering RNA increased radioresistance of U-87MG glioma cells. Therefore, overexpression of SPARC might increase radiosensitivity of glioma cells. But SPARC has been shown to promote glioma cell invasion both in vitro and vivo. In order to radiosensitize glioma cells without stimulating invasion, we chose DCX, which is a well-characterized anti-tumor gene, to coexpress with SPARC. An adenovirus-mediated double gene expression system was constructed and applied to U251 and A172 glioma cell lines. Our data showed that coexpression of DCX and SPARC collaboratively diminished radioresistance of glioma cells, interfered with cell cycle turnover and increased irradiation-induced apoptosis. In addition, transwell assay revealed that coexpression was able to counteract the invasion-promoting effects of SPARC, and even inhibited intrinsic invasion, evidenced by less invading cells in double gene overexpressed group than that of control adenovirus-treated group. In conclusion, genetic engineering combining two or more genes might be a more effective method to overcome radioresistance of glioma cells.  相似文献   

14.
The genes encoding the cyclin-dependent kinase inhibitors p16INK4A (CDKN2A) and p15INK4B (CDKN2B) are frequently homozygously deleted in a variety of tumor cell lines and primary tumors, including glioblastomas in which 40-50% of primary tumors display homozygous deletions of these two loci. Although the role of p16 as a tumor suppressor has been well documented, it has remained less well studied whether p15 plays a similar growth-suppressing role. Here, we have used replication-defective recombinant adenoviruses to compare the effects of expressing wild-type p16 and p15 in glioma cell lines. After infection, high levels of p16 and p15 were observed in two human glioma cell lines (U251 MG and U373 MG). Both inhibitors were found in complex with CDK4 and CDK6. Expression of p16 and p15 had indistinguishable effects on U251 MG, which has homozygous deletion of CDKN2A and CDKN2B, but a wild-type retinoblastoma (RB) gene. Cells were growth-arrested, showed no increased apoptosis, and displayed a markedly altered cellular morphology and repression of telomerase activity. Transduced cells became enlarged and flattened and expressed senescence-associated beta-galactosidase, thus fulfilling criteria for replicative senescence. In contrast, the growth and morphology of U373 MG, which expresses p16 and p15 endogenously, but undetectable levels of RB protein, were not affected by exogenous overexpression of either inhibitor. Thus, we conclude that overexpression of p15 has a similar ability to inhibit cell proliferation, to cause replicative senescence, and to inhibit telomerase activity as p16 in glioma cells with an intact RB protein pathway.  相似文献   

15.
Protein kinase C (PKC) activation has been implicated in cellular proliferation in neoplastic astrocytes. The roles for specific PKC isozymes in regulating this glial response, however, are not well understood. The aim of this study was to characterize the expression of PKC isozymes and the role of PKC-eta expression in regulating cellular proliferation in two well characterized astrocytic tumor cell lines (U-1242 MG and U-251 MG) with different properties of growth in cell culture. Both cell lines expressed an array of conventional (alpha, betaI, betaII, and gamma) and novel (theta and epsilon) PKC isozymes that can be activated by phorbol myristate acetate (PMA). Another novel PKC isozyme, PKC-eta, was only expressed by U-251 MG cells. In contrast, PKC-delta was readily detected in U-1242 MG cells but was present only at low levels in U-251 MG cells. PMA (100 nm) treatment for 24 h increased cell proliferation by over 2-fold in the U-251 MG cells, whereas it decreased the mitogenic response in the U-1242 MG cells by over 90%. When PKC-eta was stably transfected into U-1242 MG cells, PMA increased cell proliferation by 2.2-fold, similar to the response of U-251 MG cells. The cell proliferation induced by PMA in both the U-251 MG and U-1242-PKC-eta cells was blocked by the PKC inhibitor bisindolylmaleimide (0.5 micrometer) and the MEK inhibitor, PD 98059 (50 micrometer). Transient transfection of wild type U-251 with PKC-eta antisense oligonucleotide (1 micrometer) also blocked the PMA-induced increase in [(3)H]thymidine incorporation. The data demonstrate that two glioblastoma lines, with functionally distinct proliferative responses to PMA, express different novel PKC isozymes and that the differential expression of PKC-eta plays a determining role in the different proliferative capacity.  相似文献   

16.
With the extensive use of dexmedetomidine (Dex) in the surgical resection of tumours for its potent sedative and analgesic properties, its effects on various properties of tumours have received increased attention. The study described herein aimed to investigate the effects of Dex on glioma cells in the presence or absence of cisplatin (DDP). Glioma U251 and U87MG cells were treated with different doses (1-50 nM) of Dex for 12 hours, then recultured in a Dex-free medium. In addition, Dex was added to U251 and U87MG cells 12 hours before or simultaneously with a 12-hour DDP treatment. Treatment with Dex increased the viability of both cell lines; this effect continued for at least 24 hours after Dex was removed. A cell invasion assay indicated that Dex inhibited cell invasion at 50 nM, but not at 10 nM. Western blot analysis showed that Dex increased the expression of phosphorylated extracellular-signal-regulated kinase 1/2, phosphoitide 3-kinase and p-AKT, but decreased ROCK protein levels at a dose of 50 nM. Intracellular Ca 2+ concentration was decreased by Dex in a dose-dependent manner. DDP toxicity was attenuated by 10 nM Dex added either before or with DDP treatment. However, pretreatment with 50 nM Dex instead enhanced the toxicity of DDP. Single-dose treatment with Dex did not significantly change glioma volume in nude mice, but changed the expression of Ki67 and matrix metalloproteinase-3 in the tumour. In conclusion, this study provides evidence of the regulatory effects of Dex on proliferation, invasion and chemosensitivity of glioma cells, and outlines potential mechanisms for these effects.  相似文献   

17.
Several studies have indicated that microgravity can influence cellular progression, proliferation, and apoptosis in tumor cell lines. In this study, we observed that simulated microgravity inhibited proliferation and induced apoptosis in U251 malignant glioma (U251MG) cells. Furthermore, expression of the apoptosis-associated proteins, p21 and insulin-like growth factor binding protein-2 (IGFBP-2), was upregulated and downregulated, respectively, following exposure to simulated microgravity. These findings indicate that simulated microgravity inhibits proliferation while inducing apoptosis of U251MG cells. The associated effects appear to be mediated by inhibition of IGFBP-2 expression and stimulation of p21 expression. This suggests that simulated microgravity might represent a promising method to discover new targets for glioma therapeutic strategy.  相似文献   

18.
Glioblastomas (GBMs) are the most common of both benign and malignant primary brain tumours, in which the inflammatory and immunologic abnormalities are involved. Interleukin‐17A (IL‐17A) plays an important role in various inflammatory diseases and cancers. Several recent studies revealed that the expression of IL‐17A was overexpressed in human GBMs tissue. However, the accurate role of IL‐17A in GBMs remains unclear. In this study, we aimed to explore the effect of IL‐17A on cell migration and invasion of GBMs and the mechanism by which the effects occurred. We found that exogenous IL‐17A promoted significantly cell migration and invasion abilities in two GBMs cell lines (U87MG and U251) in a time‐dependent manner. In addition, the protein expressions of PI3K, Akt and MMP‐2/9 were increased in the GBMs cells challenged by IL‐17A. Furthermore, a tight junction protein ZO‐1 was down‐regulated but Twist and Bmi1 were up‐regulated. Treatment with a PI3K inhibitor (LY294002) significantly reduced the abilities of both migration and invasion in U87MG and U251 cells. LY294002 treatment also attenuated the IL‐17A causing increases of protein levels of PI3K, AKT, MMP‐2/9, Twist and the decreases of protein level of ZO‐1 in the U87MG and U251 cells. Taken together, we concluded that IL‐17A promotes the GBM cells migration and invasion via PI3K/AKT signalling pathway. IL‐17A and its related signalling pathways may be potential therapeutic targets for GBM.  相似文献   

19.
20.
The PI3K/AKT/mTOR pathway is commonly over activated in glioblastoma (GBM), and Rictor was shown to be an important regulator downstream of this pathway. EGFR overexpression is also frequently found in GBM tumors, and both EGFR and Rictor are associated with increased proliferation, invasion, metastasis and poor prognosis. This research evaluated in vitro and in vivo whether the combined silencing of EGFR and Rictor would result in therapeutic benefits. The therapeutic potential of targeting these proteins in combination with conventional agents with proven activity in GBM patients was also assessed. In vitro validation studies were carried out using siRNA-based gene silencing methods in a panel of three commercially available human GBM cell lines, including two PTEN mutant lines (U251MG and U118MG) and one PTEN-wild type line (LN229). The impact of EGFR and/or Rictor silencing on cell migration and sensitivity to chemotherapeutic drugs in vitro was determined. In vivo validation of these studies was focused on EGFR and/or Rictor silencing achieved using doxycycline-inducible shRNA-expressing U251MG cells implanted orthotopically in Rag2M mice brains. Target silencing, tumor size and tumor cell proliferation were assessed by quantification of immunohistofluorescence-stained markers. siRNA-mediated silencing of EGFR and Rictor reduced U251MG cell migration and increased sensitivity of the cells to irinotecan, temozolomide and vincristine. In LN229, co-silencing of EGFR and Rictor resulted in reduced cell migration, and increased sensitivity to vincristine and temozolomide. In U118MG, silencing of Rictor alone was sufficient to increase this line’s sensitivity to vincristine and temozolomide. In vivo, while the silencing of EGFR or Rictor alone had no significant effect on U251MG tumor growth, silencing of EGFR and Rictor together resulted in a complete eradication of tumors. These data suggest that the combined silencing of EGFR and Rictor should be an effective means of treating GBM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号