首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 792 毫秒
1.
中枢神经系统(central nervous system,CNS)环路是注意力、奖赏应答和动机等精神活动的基础,而神经递质多巴胺(dopamine,DA)在这一环路中起关键作用。多巴胺转运体(dopamine transport,DAT)位于突触前体,重新摄取DA,维持突触多巴胺有效性和多巴胺能神经元的协调性。多巴胺转运体功能异常会导致脑内多巴胺平衡失调,从而引起精神兴奋剂依赖、帕金森病(Parkinson disease,PD)、精神分裂症及注意力缺陷多动障碍(attention-deficit hyperactivity disorder,ADHD)等多种神经精神疾病。本文从DAT的结构与功能及其在多巴胺信号调节中的分子机制,DAT与精神兴奋剂依赖等疾病关系的相关研究进行了论述。  相似文献   

2.
一般认为大鼠可通过压杆获取成瘾性药物 (如可卡因 )。可卡因可阻断多巴胺 (dopamine ,DA)能神经元细胞膜上的DA转运体 ,阻滞DA的重摄取 ,从而引起突触间隙DA浓度增高 ,引起奖赏效应。但美国北卡大学的Phillips等应用快速反应的电化学探头 (可检测 10 0ms内的变化 )置于大鼠脑内伏核中央部 ,记录细胞外液中DA浓度的变化。发现有两种变化 ,一种是紧张性改变 ,其时程达几分钟 ;一种是位相性改变 ,时程小于 1秒。他们发现 ,大鼠经训练后可以自行压杆来获得可卡因的静脉注射。当血液 (及细胞外液 )中可卡因浓度增高时 ,DA能神经元放电频率…  相似文献   

3.
本实验运用PC12细胞,研究不同浓度多巴胺(dopamine,DA)对细胞的影响。同时利用兼具促进多巴胺释放和抑制多巴胺摄取双重作用的安非它命(amphetamine,AMP)观察胞内外多巴胺对细胞的不同作用。结果显示:胞外高浓度DA能引起细胞抗氧化能力下降,胞内游离Ca~(2+)浓度上升,细胞存活率大幅度降低,部分细胞出现凋亡;低浓度DA对细胞存活率无明显影响,而使细胞抗氧化能力有一定提高。长时间安非它命单独作用也可引起细胞存活率下降,并伴随胞内GSH水平降低;安非它命与多巴胺共同作用在一定程度上可导致细胞内抗氧化物质水平低于多巴胺单独作用,表明细胞内一定浓度DA可以维持或提高细胞抗氧化物质水平。结果提示,脑内同样存在的多巴胺神经元对DA重摄取功能下降,胞外氧化应激增强,可能是引起脑内多巴胺神经元退行性病变的重要原因之一。  相似文献   

4.
本实验运用PC12细胞,研究不同浓度多巴胺(dopamine,DA)对细胞的影响,同时利用兼具促进多巴胺释放和抑制多巴胺摄取双重作用的安排它命(amphetamine,AMP)观察胞内外多巴胺对细胞的不同作用。结果显示;胞外高浓度DA能引起细胞抗氧化能力下降,胞内游离Ca^2 浓度上升。细胞存活率大幅度降低,部分细胞出现凋亡;低浓度DA对细胞存活率无明显影响,而使细胞抗氧化能力有一定提高,长时间安非它命单独作用也可引起细胞存活率下降,并伴随胞内GSH水平降低;安非它命与多巴胺共同作用在一定程度上可导致细胞内抗氧化物质水平低于多巴胺单独作用,表明细胞内一定浓度DA可以维持或提高细胞抗氧化物质水平。结果提示,脑内同样存在的多巴胺神经元对DA重摄取功能下降,胞外氧化应激增强,可能是引起脑内多巴胺神经元退行性病变的重要原因之一。  相似文献   

5.
多巴胺是脑内重要的信息传递物质,不仅可以作为递质释放到前额叶、伏隔核等脑区,直接进行信息传递,也可以作为调质调节其它突触递质的传递,并影响神经元可塑性。海马参与构成边缘系统,受多巴胺能神经支配,执行着有关学习记忆以及空间定位的功能。海马神经元的可塑性是学习记忆的细胞分子基础。研究表明,多巴胺对海马神经元的突触可塑性和兴奋性可塑性都具有重要的调节作用。本文扼要综述多巴胺对海马神经元突触可塑性和兴奋性可塑性的调节机制的研究进展,以期为DA系统参与海马区学习记忆功能的研究提供新思路,更深入地了解学习记忆的神经机制。  相似文献   

6.
人的精神活动高级而又复杂,至今仍是未解之谜。目前研究认为多巴胺作为脑内重要神经递质,参与调节人的精神活动和运动功能,尤其在睡眠的主动性神经调节过程,以及学习记忆等认知功能的神经环路中,多巴胺都发挥着不可替代的作用。本文将通过对多巴胺神经系统,睡眠,认知功能的概述,以及通过对多巴胺神经系统与睡眠-觉醒系统和认知功能的解剖学联系的简述,结合多巴胺神经元、多巴胺受体及多巴胺转运体等不同角度分别阐述其对睡眠-觉醒和认知功能的调控作用,以期揭开人类精神活动的产生机制的一层面纱,以及对多巴胺药物对神经退行性变疾病的治疗靶点提供一定的理论支持。  相似文献   

7.
人神经母细胞瘤细胞SH-SY5Y细胞可以表达神经元特异性的酪氨酸羟化酶、多巴胺-β-羟化酶以及多巴胺转运体等,因此可用于建立帕金森病的体外模型。虽然帕金森综合症发病的确切机制至今尚不清楚,但众多的病理学资料证实该病患者存在中脑黑质多巴胺能神经元的凋亡。自由基、兴奋性  相似文献   

8.
多巴胺神经系统显像分子探针研究   总被引:1,自引:0,他引:1  
多巴胺神经系统在神经退行性疾病和精神紊乱中充当了主要角色,比如帕金森病、亨廷顿病、迟发性运动障碍、精神分裂症。以多巴胺能神经系统为靶点的PET显像可以了解多巴胺合成、受体密度和状态改变,为神经系统疾病的早期诊断、疗效监测、发病机制以及脑认知功能的研究等方面提供客观、科学的观察手段。本文综述了以多巴胺受体、多巴胺转运体及囊泡单胺转运体为靶点的PET显像剂的研究进展。  相似文献   

9.
中脑多巴胺能神经元(mesodiencephalic dopamine,mdDA,neurons)由于涉及帕金森病、精神分裂症和药物成瘾等多种神经疾病的病理过程而历来受到人们的重视。研究中脑多巴胺能神经元的发育机制将给这些疾病的治疗带来希望。近来的研究表明多巴胺能神经元轴突的导向由各种诱向因子决定,诱向因子主要由相应投射部位的细胞所分泌,其中研究得最多的是ephrins,netrins,semaphorins,Slits及它们各自的受体。介绍胚胎期中脑多巴胺能神经元轴突导向过程及其主要诱向因子。  相似文献   

10.
高亲和力谷氨酸转运体   总被引:7,自引:1,他引:7  
Yang R  Yang XL 《生理科学进展》2000,31(4):293-298
高亲和力谷氨酸转运体主要位于神经元和胶质细胞的细胞膜上,能逆浓度梯度从胞外向胞内摄取谷氨酸,中止谷氨酸能传递,使胞外谷氨酸浓度保持在较低水平,以保护神经元不受谷氨酸的毒性影响。近年来,随着高亲和力谷氨酸转运体的克隆,有关研究迅速发展。本文从高亲和力谷氨酸转运体的克隆、分子结构特征、表达分布、生理功能、结构-功能关系等方面对近年的进展加以综述。  相似文献   

11.
12.
The dysregulation of the dopaminergic system is implicated in multiple neurological and neuropsychiatric disorders such as Parkinson disease and drug addiction. The primary target of psychostimulants such as amphetamine and methamphetamine is the dopamine transporter (DAT), the major regulator of extracellular dopamine levels in the brain. However, the behavioral and neurophysiological correlates of methamphetamine and amphetamine administration are unique from one another, thereby suggesting these two compounds impact dopaminergic neurotransmission differentially. We further examined the unique mechanisms by which amphetamine and methamphetamine regulate DAT function and dopamine neurotransmission; in the present study we examined the impact of extracellular and intracellular amphetamine and methamphetamine on the spontaneous firing of cultured midbrain dopaminergic neurons and isolated DAT-mediated current. In dopaminergic neurons the spontaneous firing rate was enhanced by extracellular application of amphetamine > dopamine > methamphetamine and was DAT-dependent. Amphetamine > methamphetamine similarly enhanced DAT-mediated inward current, which was sensitive to isosmotic substitution of Na+ or Cl ion. Although isosmotic substitution of extracellular Na+ ions blocked amphetamine and methamphetamine-induced DAT-mediated inward current similarly, the removal of extracellular Cl ions preferentially blocked amphetamine-induced inward current. The intracellular application of methamphetamine, but not amphetamine, prevented the dopamine-induced increase in the spontaneous firing of dopaminergic neurons and the corresponding DAT-mediated inward current. The results reveal a new mechanism for methamphetamine-induced dysregulation of dopaminergic neurons.  相似文献   

13.
Ethanol alters a variety of properties of brain dopaminergic neurons including firing rate, synthesis, release, and metabolism. Recent studies suggest that ethanol's action on central dopamine systems may also involve modulation of dopamine transporter (DAT) activity. The human DAT was expressed in Xenopus oocytes to examine directly the effects of ethanol on transporter function. [3H]Dopamine (100 nM) accumulation into DAT-expressing oocytes increased significantly in response to ethanol (10 min; 10-100 mM). In two-electrode voltage-clamp experiments, DAT-mediated currents were also enhanced significantly by ethanol (10-100 mM). The magnitude of the ethanol-induced potentiation of DAT function depended on ethanol exposure time and substrate concentration. Cell surface DAT binding ([3H]WIN 35,428; 4 nM) also increased as a function of ethanol exposure time. Thus, the increase in dopamine uptake was associated with a parallel increase in the number of DAT molecules expressed at the cell surface. These experiments demonstrate that DAT-mediated substrate translocation and substrate-associated ionic conductances are sensitive to intoxicating concentrations of ethanol and suggest that DAT may represent an important site of action for ethanol's effects on central dopaminergic transmission. A potential mechanism by which ethanol acts to enhance DAT function may involve regulation of DAT expression on the cell surface.  相似文献   

14.
Dopaminergic neurons are more vulnerable than other types of neurons in cases of Parkinson disease and ischemic brain disease. An increasing amount of evidence suggests that endogenous dopamine plays a role in the vulnerability of dopaminergic neurons. Although glutamate toxicity contributes to the pathogenesis of these disorders, the sensitivity of dopaminergic neurons to glutamate toxicity has not been clarified. In this study, we demonstrated that dopaminergic neurons were preferentially affected by glutamate toxicity in rat mesencephalic cultures. Glutamate toxicity in dopaminergic neurons was blocked by inhibiting extracellular signal-regulated kinase (ERK), c- jun N-terminal kinase, and p38 MAPK. Furthermore, depletion of dopamine by α-methyl- dl - p -tyrosine methyl ester (α-MT), an inhibitor of tyrosine hydroxylase (TH), protected dopaminergic neurons from the neurotoxicity. Exposure to glutamate facilitated phosphoryration of TH at Ser31 by ERK, which contributes to the increased TH activity. Inhibition of ERK had no additive effect on the protection offered by α-MT, whereas α-MT and c- jun N-terminal kinase or p38 MAPK inhibitors had additive effects and yielded full protection. These data suggest that endogenous dopamine is responsible for the vulnerability to glutamate toxicity of dopaminergic neurons and one of the mechanisms may be an enhancement of dopamine synthesis mediated by ERK.  相似文献   

15.
Mesolimbic dopaminergic neurons modulate complex circuitry in the ventral forebrain involved in reward processing, although the precise function of the dopaminergic input is debated. Electrophysiological measurements have revealed that mesolimbic dopaminergic neurons can fire in either tonic or phasic modes, and that phasic firing accompanies the alerting or anticipatory phases of reward. However, the neurochemical relevance of this rapid neuronal discharge within the reward processing circuitry is not yet clear, in part because of difficulty in interpretation of extracellular dopamine measurements. Herein, the nature of the information provided by different neurochemical techniques is critically discussed. Classical methods of monitoring dopamine reveal changes in extracellular dopamine resulting from tonic neuronal activity, but do not have the temporal resolution to distinguish concentration transients. However, recent advances in dopamine sensors now enable transient dopamine concentrations resulting from phasic firing to be positively identified and followed on a physiologically relevant timescale. This has enabled demonstrations of discrete, phasic dopamine signals accompanying rewarding or alerting stimuli. Thus, enhanced dopamine release at terminals appears to be coincident with phasic electrical activity at cell bodies. These accumulating data promise to help unravel the precise role of phasic dopamine transmission in reward processing.  相似文献   

16.
The strength and duration of extracellular dopamine concentrations are regulated by the presynaptic dopamine transporter (DAT) and dopamine D2 autoreceptors (D2autoRs). There is a functional interaction between these two proteins. Activation of D2autoRs increases DAT trafficking to the surface whereas disruption of this interaction compromises activities of both proteins and alters dopaminergic transmission. Previously we reported that DAT expression and activity are subject to modulation by protein kinase Cβ (PKCβ). Here, we further demonstrate that PKCβ is integral for the interaction between DAT and D2autoR. Inhibition or absence of PKCβ abolished the communication between DAT and D2autoR. In mouse striatal synaptosomes and transfected N2A cells, the D2autoR‐stimulated membrane insertion of DAT was abolished by PKCβ inhibition. Moreover, D2autoR‐stimulated DAT trafficking is mediated by a PKCβ‐extracellular signal‐regulated kinase signaling cascade where PKCβ is upstream of extracellular signal‐regulated kinase. The increased surface DAT expression upon D2autoR activation resulted from enhanced DAT recycling as opposed to reduced internalization. Further, PKCβ promoted accelerated DAT recycling. Our study demonstrates that PKCβ critically regulates D2autoR‐activated DAT trafficking and dopaminergic signaling. PKCβ is a potential drug target for correcting abnormal extracellular dopamine levels in diseases such as drug addiction and schizophrenia.  相似文献   

17.
The dopamine transporter shapes dopaminergic neurotransmission by clearing extracellular dopamine and by replenishing vesicular stores. The dopamine transporter carries an endogenous binding site for Zn2+, but the nature of the Zn2+-dependent modulation has remained elusive: both, inhibition and stimulation of DAT have been reported. Here, we exploited the high time resolution of patch-clamp recordings to examine the effects of Zn2+ on the transport cycle of DAT: we recorded peak currents associated with substrate translocation and steady-state currents reflecting the forward transport mode of DAT. Zn2+ depressed the peak current but enhanced the steady-state current through DAT. The parsimonious explanation is preferential binding of Zn2+ to the outward facing conformation of DAT, which allows for an allosteric activation of DAT, in both, the forward transport mode and substrate exchange mode. We directly confirmed that Zn2+ dissociated more rapidly from the inward- than from the outward-facing state of DAT. Finally, we formulated a kinetic model for the action of Zn2+ on DAT that emulated all current experimental observations and accounted for all previous (in part contradictory) findings. Importantly, the model predicts that the intracellular Na+ concentration determines whether substrate uptake by DAT is stimulated or inhibited by Zn2+. This prediction was directly verified. The mechanistic framework provided by the current model is of relevance for the rational design of allosteric activators of DAT. These are of interest for treating de novo loss-of-function mutations of DAT associated with neuropsychiatric disorders such as attention deficit hyperactivity disorder (ADHD).  相似文献   

18.
19.
Altered synaptic dopamine levels have been implicated in several neurological/neuropsychiatric disorders, including drug addiction and schizophrenia. However, it is unclear what precipitates these changes in synaptic dopamine levels. One of the key presynaptic components involved in regulating dopaminergic tone is the dopamine transporter (DAT). Here, we report that the DAT is also regulated by the dopamine D2 receptor through a direct protein-protein interaction involving the DAT amino-terminus and the third intracellular loop of the D2 receptor. This physical coupling facilitates the recruitment of intracellular DAT to the plasma membrane and leads to enhanced dopamine reuptake. Moreover, mice injected with peptides that disrupt D2-DAT interaction exhibit decreased synaptosomal dopamine uptake and significantly increased locomotor activity, reminiscent of DAT knockout mice. Our data highlight a novel mechanism through which neurotransmitter receptors can functionally modulate neurotransmitter transporters, an interaction that can affect the synaptic neurotransmitter levels in the brain.  相似文献   

20.
Lee KH  Kim MY  Kim DH  Lee YS 《Neurochemical research》2004,29(7):1405-1409
The dopamine transporter (DAT) regulates the extent and duration of dopamine receptor activation through sodium-dependant reuptake of dopamine into presynaptic neurons, resulting in termination of dopaminergic neurotransmission. Using the yeast two-hybrid system, we have identified novel interactions between DAT, the SNARE protein syntaxin 1A, and the receptor for activated C kinases (RACK1). This association involves the intracellular N-terminal domain of human DAT (hDAT). Our data suggest that hDAT may exist as dimers or oligomers and that its protein-protein interactions with syntaxin 1A and RACK1 form functional regulatory complexes that may mediate DAT trafficking through modulation of hDAT phosphorylation by PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号