共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
S. Cao X.-H. Du L.-H. Li Y.-D. Liu L. Zhang X. Pan Y. Li H. Li H. Lu 《Russian Journal of Plant Physiology》2017,64(2):224-234
Reactive oxygen species (ROS) play key roles in plants and are regulated by several ROS-scavenging enzymes. Ascorbate peroxidase (APX), which catalyzes the reduction of hydrogen peroxide to water, a vital part of ROS formation, plays a significant role in higher plants. In this study, a cytosolic APX gene from Populus tomentosa, named PcAPX, was identified and characterized. Recombinant PcAPX had a calculated mass of 33.24 kD and showed high activity towards ascorbic acid (ASA) and hydrogen peroxide (H2O2). Real-time PCR analysis showed that APX mRNA expression levels were higher in leaves than roots or stems of P. tomentosa. Compared with wild-type, transgenic tobacco plants overexpressing PcAPX showed no significant difference in morphology under normal conditions. However, the transgenic plants were more resistant to drought, salt and oxidative stress conditions, as shown by decreased levels of malondialdehyde and increased levels of chlorophyll. Moreover, decreased H2O2 levels, increased ASA consumption, an increase in the NADP to NADPH ratio, and higher APX activity in the transgenic plants suggested an increased ability to eliminate ROS. These data suggest that PcAPX overexpression in transgenic tobacco plants can enhance tolerance to drought, salt and oxidative stress. Therefore, APX has a crucial role in abiotic stress tolerance in plants. 相似文献
5.
6.
In Arabidopsis, NPR1 (non-expressor of pathogenesis related genes 1, AtNPR1) functions downstream of salicylic acid (SA) and modulates the SA mediated systemic acquired resistance. It is also involved
in a cross talk with the jasmonate pathway that is essential for resistance against herbivores and necrotrophic pathogens.
Overexpression of AtNPR1 in transgenic plants resulted in enhanced disease resistance. Recently, tobacco transgenic plants expressing AtNPR1 were shown to be tolerant to the early instars of Spodoptera litura (Meur et al., Physiol Plant 133:765–775, 2008). In this communication, we show that the heterologous expression of AtNPR1 in tobacco has also enhanced the oxidative stress tolerance. The transgenic plants exhibited enhanced tolerance to the treatment
with methyl viologen. This tolerance was associated with the constitutive upregulation of PR1, PR2 (glucanase), PR5 (thaumatin like protein), ascorbate peroxidase (APX) and Cu2+/Zn2+ superoxide dismutase (SOD). This is the first demonstration of the novel function of heterologous expression of AtNPR1 in oxidative stress tolerance in transgenic tobacco. 相似文献
7.
N. N. Li L. Chen X. H. Li Q. Li W. B. Zhang K. Takechi H. Takano X. F. Lin 《Biologia Plantarum》2017,61(1):95-105
Uridine diphosphate glucose dehydrogenase (UGDH) plays an important role in biosynthesis of hemicellulose by catalyzing oxidation of UDP-glucose (UDP-Glc) to UDP-glucuronate (UDP-GlcA), a key sugar nucleotide involved in biosynthesis of the plant cell wall. In this study, a UGDH ortholog referred to as LgUGDH was isolated from Larix gmelinii using PCR and rapid amplification of cDNA ends techniques. Real-time PCR shows that the LgUGDH gene was expressed primarily in larch stems in addition to its roots and leaves, and Southern blot analysis indicates that UGDH is encoded by two paralogous genes in L. gmelinii. Overexpression of LgUGDH increased the content of soluble sugars and hemicelluloses and enhanced vegetative growth and cold tolerance in transgenic Arabidopsis thaliana. These results reveal that L. gmelinii UGDH participates in sucrose/polysaccharide metabolism and cell wall biosynthesis and may be a good candidate gene for enhancing plant growth, cold tolerance, and hemicellulose content. 相似文献
8.
Ying Zhai Shuli Shao Wei Sha Yan Zhao Jun Zhang Weiwei Ren Chuang Zhang 《Plant Cell, Tissue and Organ Culture》2017,128(3):607-618
Ethylene response factors (ERFs) are widespread in plants, which are widely involved in plant response to biotic and abiotic stress. In this research, a soybean gene, GmERF9, was identified and the function was characterized. The results showed that GmERF9 contained a typical AP2/ERF binding domain and a putative nuclear localization signal sequence. The real-time fluorescence quantitative PCR (qPCR) revealed that the expression of GmERF9 could be induced by ethylene (ET), abscisic acid (ABA), drought, salt and cold stresses. GmERF9 protein could specifically bind to the GCC-box and activate the expression of the reporter gene in the yeast cells and tobacco leaves. Overexpression of GmERF9 enhanced the expression of pathogenesis-related (PR) genes, including PR1, PR2, Osmotin (PR5), and SAR8.2. Also, the overexpression of GmERF9 increased the accumulation of proline and soluble carbohydrate, and decreased the accumulation of malondialdehyde under drought and cold stresses in the transgenic tobacco compared to the wild type (WT) tobacco, which indicated that GmERF9 enhanced the tolerance to drought and cold stresses in the transgenic tobacco. In summary, the function of GmERF9 is involved in the response to environmental stresses for plants, which can be used as a candidate gene for genetic engineering of crops. 相似文献
9.
10.
Water movement across cellular membranes is regulated largely by a family of water channel proteins called aquaporins (AQPs).
Since several abiotic stresses such as, drought, salinity and freezing, manifest themselves via altering water status of plant
cells and are linked by the fact that they all result in cellular dehydration, we overexpressed an AQP (tonoplast intrinsic
protein) from Panax ginseng, PgTIP1, in transgenic Arabidopsis
thaliana plants to test its role in plant’s response to drought, salinity and cold acclimation (induced freezing tolerance). Under
favorable conditions, PgTIP1 overexpression significantly increased plant growth as determined by the biomass production, and leaf and root morphology.
PgTIP1 overexpression had beneficial effect on salt-stress tolerance as indicated by superior growth status and seed germination
of transgenic plants under salt stress; shoots of salt-stressed transgenic plants also accumulated greater amounts of Na+ compared to wild-type plants. Whereas PgTIP1 overexpression diminished the water-deficit tolerance of plants grown in shallow (10 cm deep) pots, the transgenic plants
were significantly more tolerant to water stress when grown in 45 cm deep pots. The rationale for this contrasting response,
apparently, comes from the differences in the root morphology and leaf water channel activity (speed of dehydration/rehydration)
between the transgenic and wild-type plants. Plants overexpressed with PgTIP1 exhibited lower (relative to wild-type control) cold acclimation ability; however, this response was independent of cold-regulated
gene expression. Our results demonstrate a significant function of PgTIP1 in growth and development of plant cells, and suggest that the water movement across tonoplast (via AQP) represents a rate-limiting
factor for plant vigor under favorable growth conditions and also significantly affect responses of plant to drought, salt
and cold stresses. 相似文献
11.
A new plant expression vector (pBSbtCry1Ac-GNA) containing two insect resistant genes, a synthetic chimeric gene SbtCry1Ac encoding the insecticidal protein CrylAc and a gene GNA encoding snowdrop lectin (Galanthus nivalis agglutinin) was constructed. Transgenic tobacco plants containing these two genes were obtained through Agrobacterium-mediated transformation of tobacco leaf discs. Results from PCR detection and genomic DNA Southern blot analysis indicated
that both SbtCrylAc gene and GNA gene were integrated into the genome of these plants. Results of Western blot analysis indicated that these two proteins
were expressed in the analyzed plants. Bioassays of Myzus persicae and Helicoverpa assulta on detached leaves of transformed tobacco plants were carried out. The average aphid inhibition rate of these plants tested
at 12 d post-infestation was 71.9 %. The average H. assulta mortality of these plants tested at 6 d post-infestation was up to 89.8 %. The kanamycin resistance of the T1 progeny of these transgenic plants was analyzed and a typical 3:1 segregation was observed. 相似文献
12.
13.
Background
Vibrio cholerae is the causative agent of cholera. Extensive studies reveal that complicated regulatory cascades regulate expression of virulence genes, the products of which are required for V. cholerae to colonize and cause disease. In this study, we investigated the expression of the key virulence regulator ToxR under different conditions. 相似文献14.
15.
16.
17.
18.
19.
20.