首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The present research investigates the effect of Piriformospora indica, an endophytic fungus, on production of protoberberine alkaloids in in vitro cell suspension cultures of Tinospora cordifolia. Although T. cordifolia produces a number of protoberberine alkaloids, the simultaneous production of jatrorrhizine and palmatine in cell suspension cultures of T. cordifolia was observed for the first time with the use of P. indica as biotic elicitor. The cells in suspension cultures were elicitated with P. indica on 14th day of culture initiation and the production of the alkaloids on 16th day was monitored. The autoclaved as well as filter sterilized cultures of P. indica were used in addition to the use of fungal cell extract. The elicitor effect of P. indica was analyzed and compared with other abiotic elicitor (methyl jasmonate) and biotic elicitors (chitin and chitosan). The culture filtrate of P. indica in the filter sterilized (5.0% v/v) form gave better response with enhanced 4.2-fold production of jatrorrhizine (10.72 mg/g DW) and 4.0-fold production of palmatine (4.39 mg/g DW). The production of these compounds was at par with that achieved in methyl jasmonate (at 250 µM) treated cell suspension cultures.  相似文献   

2.
Ajuga bracteosa is a medicinally important plant globally used in the folk medicine against many serious ailments. In the present study, effects of two significant elicitors, methyl jasmonate (Me-J) and phenyl acetic acid (PAA) were studied on growth parameters, secondary metabolites production, and antioxidant potential in adventitious root suspension cultures of A. bracteosa. The results showed a substantial increase in biomass accumulation, exhibiting longer log phases of cultures growth in response to elicitor treatments, in comparison to control. Maximum dry biomass formation (8.88 DW g/L) was recorded on 32nd day in log phase of culture when  0.6 mg/L Me-J was applied; however, PAA at 1.2 mg/L produced maximum biomass (8.24 DW g/L) on day 40 of culture.  Furthermore, we observed the elicitors-induced enhancement in phenolic content (total phenolic content), flavonoid content (total flavonoid content) and antioxidant activity (free radical scavenging activity) in root suspension cultures of A. bracteosa. Application of 0.6 mg/L and 1.2 mg/L of Me-J, root cultures accumulated higher TPC levels (3.6 mg GAE/g DW) and (3.7 mg GAE/g DW) in the log phase and stationary phase, respectively, while 2.5 mg/L Me-J produced lower levels (1.4 mg GAE/g DW) in stationary phase of growth stages. Moreover, TFC and FRSA values were found in correspondence to TPC values in the respective growth phases at the similar elicitor treatment. Thus, a feasible protocol for establishment of adventitious roots in A. bracteosa was developed and enhancement in biomass and metabolite content in adventitious root was promoted through elicitation.  相似文献   

3.
Linum usitatissimum: L. is well-known for production of pharmacologically important secondary metabolites. Due to their tremendous beneficial effects on human health, these compounds are receiving greater attention throughout the World, especially in the treatment of various types of cancers. In present study, we have developed an efficient protocol for production of lignans like secoisolariciresinol diglucoside (SDG) and lariciresinol diglucoside (LDG) and neo-lignans like dehydrodiconiferyl alcohol glucoside (DCG) and guaiacylglycerol-β-coniferyl alcohol ether glucoside (GGCG) by exploiting in vitro callus cultures of Flax. These cultures were established from stem and leaf explants, inoculated on Murashige and Skoog (MS) media supplemented with various concentrations of α-naphthalene acetic acid (NAA), thidiazuron (TDZ) and 6-benzyl adenine (BA). Results revealed that the leaf-derived calli (1.0 mg/l NAA) accumulated highest levels of biomass (DW; 15.7 g/l) and antioxidant activity, while highest production of total phenolics (111.09 mg/l) and flavonoids (45.02 mg/l) were observed in stem-derived calli (1.0 mg/l NAA). The high-performance liquid chromatography (HPLC) analysis revealed that the stem-derived calli (1.0 mg/l NAA) accumulated optimum concentrations of SDG (2.7?±?0.021 mg/g DW), LDG (9.8?±?0.062 mg/g DW) and DCG (13.8?±?0.076 mg/g DW), while leaf-derived calli (1.0 mg/l NAA) showed optimum accumulation of GGCG (3.8?±?0.022 mg/g DW) as compared to all other treatments. These results provided definite evidence that the NAA differentially influence the production of lignans and neo-lignans in callus culture of Flax. This study opens new dimensions to devise strategies to enhance the production of these valuable metabolites.  相似文献   

4.
Methanolic extracts from calluses and shoots of Aronia arbutifolia and Aronia × prunifolia cultivated in vitro were quantitatively analysed for phenolic acids by DAD-HPLC. The cultures were grown on ten variants of Murashige–Skoog medium variants enriched with various concentrations of growth regulators (GRs), BA and NAA, in the concentration range 0.1–3.0 mg/L. The analysed extracts were confirmed to contain from four to six compounds (depsides—chlorogenic acid, neochlorogenic acid, and rosmarinic acid, and also protocatechuic acid, p-hydroxybenzoic acid, and 3,4-dihydroxyphenylacetic acid). The total amounts of the metabolites varied considerably, depending on the amounts of the GRs in the tested medium variants, and increased in the callus and shoot extracts, respectively, up to 1.7 and 3.2 times (A. arbutifolia), and 2.2 and 2.7 times (A. × prunifolia). Maximum total amounts were confirmed in shoot extracts of both plants (approx. 200 and 600 mg/100 g DW, respectively). The main compounds in A. arbutifolia cultures were the depsides—chlorogenic acid, rosmarinic acid, and neochlorogenic acid (max. 91.94, 77.03, 32.57 mg/100 g DW, respectively). The same depsides dominated quantitatively in the cultures of A. × prunifolia (max. 131.82, 206.62 and 257.39 mg/100 g DW, respectively).  相似文献   

5.
Stilbenes, including trans-resveratrol (3,4′,5-trihydroxy-trans-stilbene), are known to exert beneficial health effects and contribute to plant biotic stress resistance. Much remains to be discovered about the cell signaling pathways regulating stilbene biosynthesis. It has recently been shown that overexpression of the calcium-dependent protein kinase VaCPK20 gene considerably increased t-resveratrol accumulation in cell cultures of Vitis amurensis. In this study, we analyzed the involvement of other CDPK family members, VaCPK1 and VaCPK26, on stilbene synthesis and biomass production by cell cultures of V. amurensis. We showed that overexpression of the VaCPK1 and 26 genes induced production of stilbenes by 1.7–4.6-fold (for VaCPK1) and by 2.5–6.2-fold (for VaCPK26) in several independently established cell lines compared to the empty vector-transformed control. Using HPLC-UV-MS, we detected five stilbenes in the grape cells: t-resveratrol diglucoside, t-piceid, t-resveratrol, ε- and δ-viniferin. The VaCPK1- and VaCPK26-transformed calli were capable of producing 1.4–3.1 and 1.8–4.9 mg/l of t-resveratrol, respectively (up to 0.4 for and 0.6 mg/g of dry weight for VaCPK26 and VaCPK1, respectively), while the control line synthesized only 0.5 mg/l of t-resveratrol (0.07 mg/g DW). The up-regulation of t-resveratrol production in the VaCPK1- and VaCPK26-overexpressing grape calli correlated with a significant up-regulation of stilbene synthase (STS) gene expression, especially VaSTS7. The data indicate that VaCPK1 and 26 genes, which are close homologues of VaCPK20, are positive regulators of stilbene biosynthesis in grapevine.  相似文献   

6.
Achyranthes bidentata contains a rich source of important pharmaceutically active triterpene acids including oleanolic acid (OA) as a major one. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a key enzyme to provide mevalonate for biosynthesis of triterpene acids. In this study, in order to develop a sustainable source of OA, cell suspension cultures were established from shoot cultures of A. bidentata, and a full length cDNA encoding HMGR (designated as AbHMGR) was cloned and characterized. The cDNA contained 2078 nucleotides with a complete open reading frame of 1593 nucleotides, which was predicted to encode a peptide of 530 amino acids. Expression analysis by real-time PCR revealed that AbHMGR mRNA was abundant in A. bidentata roots, stems and leaves. When cultivated in Murashige and Skoog medium supplemented with 1.5 mg/L 1-naphthlcetic acid (NAA) and 1.5 mg/L 6-benzyladenine (6-BA), cells in suspension culture grew rapidly, yielding OA (100.9 mg/L) after 15 days. OA content in cell cultures was increased under the elicitation of methyl jasmonate (MeJA), yeast elicitor (YE) or cadmium chloride (CdCl2). The ultrahigh production of OA was achieved to 371.8 mg/L, a 5.4-fold of the control after 2-day treatment of 0.2 mM MeJA in the cell cultures. Quantitative real-time PCR analysis showed that AbHMGR was expressed at a higher level under the elicitation of MeJA or YE. Our results suggested that OA production may be the result of the up-regulated expression of AbHMGR under the treatment of various elicitors.  相似文献   

7.
In methanolic extracts of the biomass from agitated cultures of Aronia arbutifolia and Aronia?×?prunifolia grown on four variants of the Murashige and Skoog (MS) medium, with different concentrations of plant growth regulators (PGRs): BA and NAA (0.5–3.0 mg/l), the quantities of phenolic acids (19 compounds) and flavonoids (11 compounds) were estimated using the LC-DAD method. The amounts of individual metabolites and total contents were dependent on the concentration of PGRs in MS medium variant. The maximum total amounts of phenolic acids and flavonoids reached 360.80 and 65.26 mg/100 g DW, and 659.51 and 78.34 mg/100 g DW for A. arbutifolia and A. × prunifolia, respectively. The main metabolites in the biomass of both plants were chlorogenic acid, rosmarinic acid and quercitrin (max. 175.94, 147.98 and 41.14 mg/100 g DW, and 260.34, 225.26 and 78.34 mg/100 g DW, respectively). The cells of both plants convert the exogenously supplied hydroquinone into its β-D-glucoside—arbutin. The maximal total content of the product accumulated in the biomass and media reached 83.55 and 73.62 mg/g DW. The obtained results demonstrated for the first time a high biosynthetic potential of agitated cultures of both plants.  相似文献   

8.
Cistanche tubulosa is one of the most valuable desert medicinal plants, whose cell culture investigations have been rarely reported before. Phenylethanoid glycosides (PhGs) are its major components with a wide range of pharmacological activities. In this article, callus culture and cell suspension of C. tubulosa were established. Fleshy stems were found to be the most suitable explants for callus induction, and the optimal medium for induction was B5 solid medium supplemented with 0.8 g/L casein hydrolysate, 20 g/L sucrose, 2 mg/L naphthaleneacetic acid (NAA), and 1 mg/L 6-benzyladenine (6-BA). Based on qualitative and quantitative determination of two PhGs (echinacoside and acteoside) contents, the effects of carbon source concentration, precursor feeding, and elicitor treatments on cell growth and two PhGs accumulation in cell suspension cultures were investigated. Thirty g/L was the optimal initial sucrose concentration to obtain the high yield of biomass (9.29 g dry weight, DW) per liter cell suspension culture, echinacoside (12.14%, based on DW cells) and acteoside (2.17%). Precursor feeding also had a positive effect on PhGs accumulation. Feeding of precursor tyrosine (1 g/L) to the cell cultures increased the levels of echinacoside to 18.83% and acteoside to 2.92%, which were approximate 1.5 times of the corresponding levels in the control group. Methyl jasmonate (MJ) was the ideal elicitor for PhGs accumulations in C. tubulosa, particularly for eliciting acteoside production. The maximum echinacoside and acteoside contents reached 21.18 and 5.24% after 12 h of treatment with 200 µM MJ, respectively, which were approximate twofold higher than those in wild plant.  相似文献   

9.
10.
Phenolic acids and tanshinones are two groups of pharmaceutical components present in Salvia miltiorrhiza Bunge. Methyl jasmonate (MeJA) has been reported to influence the accumulation of both phenolic acids and tanshinones in S. miltiorrhiza hairy roots. However, there is currently a lack of information regarding the comparison of how these two groups of bioactive compounds in S. miltiorrhiza respond to MeJA under the same conditions. In the present study, the effect of 100 µM MeJA on the biosynthesis of phenolic acids and tanshinones in S. miltiorrhiza hairy roots was investigated. The results showed that MeJA dramatically induced the accumulation of five different phenolic acids, especially rosmarinic acid and salvianolic acid B, which reached their highest contents at day 3 (20.3 mg/g DW, 1.5-fold of control) and day 6 (47.49 mg/g DW, 2.5-fold of control), respectively. The total production of phenolic acids was induced by as much as 3.3-fold of the control (day 9 after treatment), reaching 357.5 mg/L at day 6. However, tanshinone I was almost unaffected by MeJA treatment, and the accumulation of tanshinone IIA was inhibited. Furthermore, cryptotanshinone and dihydrotanshinone I were moderately induced by MeJA. The gene expression results indicated that MeJA probably induced the whole pathways, especially the tyrosine-derived pathway and the methylerythritol phosphate pathway, and finally resulted in the increased production of these metabolites. This study will help us to further understand how the different biosynthetic mechanisms of phenolic acids and tanshinones respond to MeJA and provide a reference for the future selection of elicitors for application to improving the production of targeted compounds.  相似文献   

11.
The biosynthetic potential for six lignans accumulation in two lines of Taxus x media hairy roots was investigated. The cultures of KT and ATMA hairy root lines were supplemented with precursors: coniferyl alcohol (CA 1, 10 or 100 µM) and/or l-phenylalanine (100 µM PHEN) and/or methyl jasmonate (100 µM MeJa). Moreover the two-phase in vitro cultures supported with perfluorodecalin (PFD) as a gas carrier and in situ extrahent were used. The hairy root lines differed in lignan production profiles. In the control untreated cultures KT roots did not accumulate secoisolariciresinol and lariciresinol while ATMA roots did not accumulate matairesinol. In ATMA roots the treatment with CA (1 or 10 µM) resulted in the production of lariciresinol and secoisolariciresinol whereas solely lariciresinol was present after 100 µM CA application. Elicitation with 1 µM CA and MeJa yielded with hydroxymatairesinol aglyca and lariciresinol glucosides with their highest content 37.88 and 3.19 µg/g DW, respectively. The stimulatory effect of simultaneous treatment with 1 µM CA, PHEN and MeJa on lignan production was observed when the cultures were supplemented with PFD-aerated or degassed. In ATMA root cultures these applied conditions were the most favourable for matairesinol content which amounted to 199.86 and 160.25 µg/g DW in PFD-aerated and PFD-degassed supported cultures, respectively. In KT root cultures solely, hydroxymatairesinol and coniferin/CA content was enhanced with their highest yield 59.29 and 134.60 µg/g DW in PFD-aerated and PFD-degassed cultures, respectively.  相似文献   

12.
In order to establish an attractive method for the production of valuable medicinal alkaloids (galanthamine and lycorine), the plants of Leucojum aestivum and L. aestivum ‘Gravety Giant’ grown in bioreactor RITA® were subjected to various concentrations of methyl jasmonate (MeJA), salicylic acid (SA), 1-aminocyclopropane-1-carboxylic acid (ACC) and 2-chloroethylphosphonic acid (ethephon) at different times of culture. The application of MeJA showed a negative effect on L. aestivum and L. aestivum ‘Gravety Giant’ plant growth. We observed that the incubation of plants during 168 h with 100 µM of MeJA resulted above two times lower F.W. (fresh weight) increments compared with control. While SA showed an inhibitory effect only on the growth of L. aestivum cultures. ACC and ethephon had a positive effect on both types of culture. Treatment with 50 µM of MeJA during 168 h stimulated galanthamine and lycorine biosynthesis in L. aestivum and L. aestivum ‘Gravety Giant’ cultures. In addition, the accumulation of galanthamine was increased when 10 µM of ACC were added to both types of culture. 10 µM of ACC stimulated also lycorine biosynthesis by L. aestivum ‘Gravety Giant’. The addition of 10 µM of ethephon had a positive effect only on lycorine production in plants of L. aestivum. SA promoted galanthamine and lycorine biosynthesis in tested plants. Indeed the highest galanthamine (0.8 mg/g dry weight: D.W.) and lycorine (1.53 mg/g D.W.) concentrations were observed in L. aestivum ‘Gravety Giant’ plants treated with 5 µM of SA during 10 h.  相似文献   

13.
14.
Wild tubers of Dioscorea bulbifera (Db) and Dioscorea hirtiflora (Dh) mainly used as sources of famine food and in herbal preparations are often indiscriminately collected in Africa and Asia. Therefore, there is the need to complement wild sourcing of the tubers to promote their conservation. The present study reports in vitro tuberous induction (80%) for the first time from Dh cultured on MS?+?NAA (2.5 mg/L) with IC50 of 472.5?±?1.77 µg/mL using DPPH, whereas tuberous root (60%) from Db on MS?+?Kn (2.5 mg/L)?+?NAA (0.25 mg/L) had IC50 of 26.97?±?1.00 µg/mL. Genetic fidelity assessment of in vitro plants compared to the wild plants revealed similar amplicon size of amplified DNA using trnH–psbA and rbcL. Similarly, micromorphological diagnostic features like oil gland, crystals (raphides), trichome and stomata type were obtained from the epidermal peels of the wild and in vitro plants. The ethyl acetate (EtOAc) extract of the flesh of Dh (wild) had the highest catechin content (108.3?±?0.69 µg/g DW). Protocatechuic acid was highest in the methanol (MeOH) extract of the flesh of Dh (0.42?±?0.02 µg/g DW), while it was detected in trace amount in the in vitro tuberous roots of MeOH extracts of Dh treated with NAA. The in vitro protocol developed in this study could be employed to multiply Dioscorea bulbifera L. and Dioscorea hirtiflora Benth. to offer genetically stable clones for the optimization of bioactive compounds and germplasms conservation.  相似文献   

15.
Dual metabolite, i.e., ginsenoside and anthocyanin, co-accumulating cell suspensions of Panax sikkimensis were subjected to elicitation with culture filtrates of Serratia marcescens (SD 21), Bacillus subtilis (FL11), Trichoderma atroviridae (TA), and T. harzianum (TH) at 1.25% and 2.5% v/v for 1- and 3-week duration. The fungal-derived elicitors (TA and TH) did not significantly affect biomass accumulation; however, bacterial elicitors (SD 21 and FL11), especially SD 21, led to comparable loss in biomass growth. In terms of ginsenoside content, differential responses were observed. A maximum of 3.2-fold increase (222.2 mg/L) in total ginsenoside content was observed with the use of 2.5% v/v TH culture filtrate for 1 week. Similar ginsenoside accumulation was observed with the use of 1-week treatment with 2.5% v/v SD 21 culture filtrate (189.3 mg/L) with a 10-fold increase in intracellular Rg2 biosynthesis (31 mg/L). Real-time PCR analysis of key ginsenoside biosynthesis genes, i.e., FPS, SQS, DDS, PPDS, and PPTS, revealed prominent upregulation of particularly PPTS expression (20–23-fold), accounting for the observed enhancement in protopanaxatriol ginsenosides. However, none of the elicitors led to successful enhancement in in vitro anthocyanin accumulation as compared to control values.  相似文献   

16.
Phenazine-1-carboxamide (PCN) is one of the major biocontrol agents produced by plant growth-promoting rhizosphere (PGPR) pseudomonads including Pseudomonas chlororaphis. In this study, a combined strategy of genetic modification and statistical experimental designs was applied to obtain mutants of P. chlororaphis strains with high-yield PCN production. To achieve this, the lon gene was knocked out in wild-type P. chlororaphis HT66 and the breeding mutant P3 strain with a non-scar deletion strategy. The resulting HT66Δlon and P3Δlon mutants produced a significantly higher PCN production in shake-flask cultures which was 5- and  9-folds greater than their native counterparts. The potential ability of strain P3Δlon for PCN production was further optimized by statistical designs. A two-level Plackett–Burman (PB) experimental design with six variables was employed to scrutinize medium components that significantly influence PCN production. Notably, glycerol, tryptone, and soy peptone were identified to be the most significant factors (p?<?0.05). Response surface methodology (RSM) based on the central composite design (CCD) was adopted to determine these factors optimal levels and their interactive effects between culture components for PCN production. The predicted maximum PCN production was 9002 mg/L, whereas an actual PCN production of 9174 mg/L was recorded in the validation experiments using the optimal medium containing glycerol 37.08 mL/L, tryptone 20.00 g/L, and soy peptone 25.03 g/L, which was nearly threefolds higher than without optimization and 20-folds higher than the wild-type strain. In conclusion, the results revealed that P. chlororaphis display a high potential for industrial-scale production for phenazine biopesticides.  相似文献   

17.
Artemisia pallens is an important medicinal plant. In-vitro regeneration and multiplication of A. pallens have been established using attached cotyledons. Different growth regulators were considered for regeneration of multiple shoots. An average of 36 shoots per explants were obtained by culturing attached cotyledons on Murashige and Skoog’s medium containing 2 mg/L BAP and 0.1 mg/L NAA, after 45 days. The shoots were rooted best on half Murashige and Skoog’s medium with respect to media containing 1 mg/L IBA or 1 mg/L NAA. Different parameters such as type of bacterial strains, OD600 of bacterial culture, co-cultivation duration, concentration of acetosyringone and explants type were optimized for transient expression of the reporter gene. Agrobacterium tumefaciens harbouring pCambia1301 plasmid carrying β-glucuronidase as a reporter gene and hygromycin phosphotransferase as plant selectable marker genes were used for genetic transformation of A. pallens. Hygromycin lethality test showed concentration of 15 mg/L were sufficient to inhibit the growth of attached cotyledons and multiple shoot buds of nontransgenics in selection media. Up to 83 % transient transformation was found when attached cotyledons were co-cultivated with Agrobacterium strain AGL1 for 2 days at 22 °C on shoot induction medium. The bacterial growth was eliminated by addition of cefotaxime (200 mg/L) in selection media. T0 transgenic plants were confirmed by GUS histochemical assay and further by polymerase chain reaction (PCR) using uidA and hpt gene specific primers. The study is useful in establishing technological improvement in A. pallens by genetic engineering.  相似文献   

18.
Production of conjugated linoleic acid (CLA) by the potential probiotic bacterium Lactobacillus plantarum WU-P19 was investigated with the aim of enhancing production. CLA produced using this bacterium may be used to supplement dietary intake. Cultures were fed linoleic acid for conversion to CLA and the CLA produced was measured. In some cases, chitosan was added to cultures to improve cellular uptake of linoleic acid. Under static conditions at 37 °C, the bacterium grew and produced CLA in the pH range of 5.5–6.5. At pH 6.0, a 36-h incubation period maximized the concentration of the dry biomass (0.82 g/L), the CLA content in the biomass (4.1 mg/g), and linoleic acid in the biomass (1.2 mg/g). In comparison with cultures grown without linoleic acid in the medium, supplementing the medium with linoleic acid at 600 μg/mL slowed the production of CLA, but the CLA content in the dry biomass increased to 12–14 mg/g and the linoleic acid content increased to 8–11 mg/g. Supplementing the culture medium with chitosan and linoleic acid enhanced production of CLA in the dry biomass to 21 mg/g within 36 h. Nearly 50% of the CLA was cis-9, trans-11-CLA, and the remainder was trans-10, cis-12-CLA. Linoleic acid content of the dry biomass was increased to 37 mg/g. Accumulation of CLA in the cells was enhanced by feeding linoleic acid. Supplementing the culture with linoleic acid and chitosan further increased accumulation of CLA.  相似文献   

19.
Spirodela polyrrhiza, a fast-growing duckweed with high starch and low lignin content, shows promise as a feedstock for bioenergy. Abscisic acid (ABA) is a biological hormone that controls plant growth and stress response. The effects of different ABA concentrations (0, 1.0 × 10?5, 1.0 × 10?4, 1.0 × 10?3, 1.0 × 10?2, and 1.0 × 10?1 mg/L) on duckweed biomass growth, carbon dioxide fixation, formation of photosynthetic pigments (Chlorophyll a (Chla), Chlorophyll b (Chlb), and carotenoids), the activities of soluble starch synthase (SSS) and starch branching enzyme (SBE), and the starch content of biomass were investigated in this study. ABA at concentrations lower than 1.0 × 10?3 mg/L promoted carbon dioxide fixation, whereas it inhibited carbon dioxide fixation at concentrations over 1.0 × 10?3 mg/L. ABA enhanced SSS and SBE activities at concentrations lower than 1.0 × 10?2 mg/L. ABA treatment increased the content of Chla, Chlb, and carotenoids and resulted in the enhancement of starch content. Chla content gradually increased with the increasing concentration of ABA (1.0 × 10?5 to 1.0 × 10?2 mg/L). After culturing for 10 days, starch content in 1.0 × 10?2 mg/L ABA medium reached 35.3% of dry weight (DW), which was the highest level in this study. This suggests that there is a great potential to develop a technology to increase starch accumulation in duckweed which can be used as an alternative to corn, sugarcane, or other food crops as a starch source.  相似文献   

20.
This study aimed to overexpress a glucose oxidase gene (GOD1) in Aureobasidium sp. P6 to achieve Ca2+-gluconic acid (GA) overproduction. The GOD1 gene was cloned, deleted, and overexpressed. A protein deduced from the GOD1 gene of Aureobasidium sp. P6 strain had 1824 bp that encoded a protein with 606 amino acids, with a conserved NADB-ROSSMAN domain and a GMC-oxred domain. Deleting the GOD1 gene made the disruptant GOK1 completely lose the ability to produce GA and GOD1 activity, whereas overexpressing the GOD1 gene rendered the transformant GOEX8 to produce considerably more Ca2+-GA (160.5?±?5.6 g/L) and higher GOD1 activity (1438.6?±?73.2 U/mg of protein) than its parent P6 strain (118.7?±?4.3 g/L of Ca2+-GA and 1100.0?±?23.6 U/mg of GOD1 protein). During a 10-L fermentation, the transformant GOEX8 grown in the medium containing 160.0 g/L of glucose produced 186.8?±?6.0 g/L of Ca2+-GA, the yield was 1.2 g/g of glucose, and the volumetric productivity was 1.7 g/L/h. Most of the produced GOD1 were located in the yeast cell wall. The purified product was identified to be a GA. The transformant GOEX8 overexpressing the GOD1 gene could produce considerably more Ca2+-GA (186.8?±?6.0 g/L) than its wild-type strain P6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号