首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effect of cadmium and nickel on Sinapis alba L. plants inoculated with endophytic strains of Bacillus subtilis. It was shown that treatment of S. alba seeds with endophytic strains of bacteria B. subtilis improves plant resistance to the toxic effect of cadmium and nickel and reduces manifestation of oxidative stress in the presence of higher levels of metal ions in the above-ground part of plants. Anti-stress effect and the ability of endophytic strains of B. subtilis to intensify uptake of cadmium and nickel ions by S. alba plants may be used for phytoextraction of heavy metals and stimulation of plant growth in contaminated areas.  相似文献   

2.
Impact of inoculation of wheat seeds with endophytic strains of B. subtilis bacterium on revealing cadmium phytotoxicity of the plants was investigated. It was shown that, in the presence of Cd in the plants whose seeds were inoculated with the above bacteria, the activities of catalase and peroxidase and the content of nonprotein thiols were increased, while an intensity of lipid peroxidation decreased. Moreover, inoculation of plant seeds with the bacteria contributed to lowering the metal content in plant shoots.  相似文献   

3.
The ability of Bacillus subtilis Cohn and Bacillus thuringiensis Berliner to induce systemic resistance in wheat plants to the casual agent of Septoria nodorum Berk., blotch has been studied. It has been shown that strains of Bacillus ssp. that possess the capacity for endophytic survival have antagonistic activity against this pathogen in vitro. A reduction of the degree of Septoria nodorum blotch development on wheat leaves under the influence of Bacillus spp. was accompanied by the suppression of catalase activity, an increase in peroxidase activity and H2O2 content, and expression of defence related genes such us PR-1, PR-6, and PR-9. It has been shown that B. subtilis 26 D induces expression levels of wheat pathogenesis-related (PR) genes which marks a SA-dependent pathway of sustainable development and that B. thuringiensis V-5689 and V-6066 induces a JA/ET-dependent pathway. These results suggest that these strain Bacillus spp. promotes the formation of wheat plant resistance to S. nodorum through systemic activation of the plant defense system. The designed bacterial consortium formed a complex biological response in wheat plants infected phytopathogen.  相似文献   

4.
Endophytic bacteria can stimulate host plant development. Insufficient information is available about NaCl-tolerant bacteria that colonize ice plants (Mesembryanthemum crystallinum) in their habitats. In this study, a culture-dependent method was used to isolate endophytic nitrogen-fixing bacteria from ice plants, and the resulting cultures were screened for salt-stress tolerance in vitro. A total of 17 salt-tolerant bacteria were obtained. The majority of the isolates grew well in 2.05 M NaCl with a maximum tolerance at 3.59 M. Most of the strains were Gram-positive bacteria with various plant growth-promoting traits. The 16S rRNA gene sequences revealed that the 17 isolates were distributed within three genera and corresponded to the bacterial species Halomonas sp., Bacillus sp., and Planococcus sp. Inoculation of cabbage (Brassica olereacea) seeds with selected strains showed that the strain MC1 promoted seed germination, and the same strain significantly increased root dry weight under saline stress by 24.5%. Our study suggests that ice plants naturally accommodate a variety of salt-tolerant endophytic bacteria and that these bacteria are able to relieve abiotic stress during plant growth.  相似文献   

5.
Dodonaea viscosa, a wild and perennial shrub that can tolerate harsh environmental conditions, was used for the isolation of its endophytic bacteria and their potential was explored for the promotion of Canola growth. The bacteria identified through 16S rRNA gene sequencing, belonged to ten different genera namely Inquilinus, Xanthomonas, Pseudomonas, Rhizobium, Brevundimonas, Microbacterium, Bacillus, Streptomyces, Agrococcus and Stenotrophomonas. All the strains produced small amount of IAA (indole acetic acid) in the absence of tryptophan and comparatively more in the presence of tryptophan. All the bacterial strains were positive for ammonia production, cellulase and pectinase activity, but few of them showed phosphate solubilization, siderophore and hydrogen cyanide production. Only three strains showed ACC (1-aminocyclopropane-1-carboxylate) deaminase activity when tested using in-vitro enzyme assay. Members of genera Bacillus, Pseudomonas and Streptomyces showed positive chitinase, protease and antifungal activity against two phytopathogenic fungi Aspergillus niger and Fusarium oxysoprum, while members of Xanthomonas, Pseudomonas and Bacillus showed significant root elongation of Canola which could be related with their positive plant-growth-promoting (PGP) traits. Among the three plant growth promoting Bacillus strains, B. idriensis is never reported before for its PGP activities. These results showed the potential of Dodonaea viscosa endophytic bacteria as PGPBs, which in future can be further explored for their host range/molecular mechanisms.  相似文献   

6.
The potential of endophytic bacteria to act as biofertilizers and bioprotectants has been demonstrated, and considerable progress has been made in explaining their role in plant protection. In the present study, three endophytic bacterial strains (BHU 12, BHU 16 isolated from the leaves of Abelmoschus esculentus, and BHU M7 isolated from the leaves of Andrographis paniculata) were used which displayed high sequence similarity to Alcaligenes faecalis. The biofilm formation ability of these endophytic strains in the presence of okra root exudates confirms their chemotactic ability, an initial step for successful endophytic colonization. Further, reinoculation of spontaneous rifampicin-tagged mutants into okra seedlings revealed a CFU count above 105 cells g?1 of all three endophytic strains in root samples during the first 15 days of plant growth. The CFU count increased up to 1013 by 30 days of plant growth, followed by a gradual decline to approximately 1010 cells g?1 at 45 days of plant growth. Systemic endophytic colonization was further supported by 2, 3, 5-triphenyl tetrazolium chloride staining and fluorescence imaging of ds-RED expressing conjugants of the endophytic strains. The strains were further assessed for their plausible in vivo and in vitro plant growth-promoting and antagonistic abilities. Our results demonstrated that the endophytic strains BHU 12, BHU 16, and BHU M7 augmented plant biomass by greater than 40 %. Root and shoot lengths of okra plants when primed by BHU 12, BHU 16, and BHU M7 increased up to 34 and 14.5 %, respectively. The endophytic isolates also exhibited significant in vitro antagonistic potential against the collar rot pathogen Sclerotium rolfsii. In summary, our results demonstrate excellent potential of the three endophytic bacterial strains as biofertilizers and biocontrol agents, indicating the possibility for use in sustainable agriculture.  相似文献   

7.
We investigated the effect of treating soft wheat seeds (Triticum aestivum L.) with two Pseudomonas bacteria strains, isolated from earthworm coprolites, showing a significant antifungal and growth-promoting action in preliminary screening on the activity of guaiacol-dependant peroxidase under phytopathogenic load in the presence of Bipolaris sorokiniana (Sacc.) Shoemaker as a mechanism for inducing plant resistance to the pathogen. We established a statistically significant decrease (P < 0.05) in root rot disease incidence and severity during bacterization, which is indicative both of antifungal activity of the used bacterial isolates and of their successful colonizing the rhizosphere of wheat plants. We noted a response of free and weakly bound peroxidase of wheat plants to infection with B. sorokiniana: the enzyme activity increased during pathogenesis. Bacterization also increased peroxidase activity in plant leaves and roots, the greatest differences from non-bacterized plants being observed in wheat roots in the presence of the pathogen. We detected a direct link between peroxidase activity in wheat roots and leaf tissues in the absence of the pathogen and the feedback between peroxidase activity and plant infestation by the root rot pathogen. In the presence of the phytopathogen, there is a lack of correlation between peroxidase activity in wheat roots and leaves, and there is a shift of activity towards its increase in roots, which plays an important role in the development of systemic resistance against the root rot pathogen that penetrates into plants through the roots and root collar.  相似文献   

8.
Ginseng (Panax ginseng C.A. Meyer) is a medicinal crop that requires a long culture time before it is ready to harvest, thus generating high economic and environmental costs. Symbiotic bacteria that live within the plant provide the host plant with many advantages in terms of metabolism and disease resistance. Here, we isolated endophytic bacteria from various tissues of P. ginseng seedlings using a culture-dependent method and we compared their tissue distribution. In addition, their antimicrobial activity against two fungal pathogens was investigated. Based on 16S rRNA sequencing, we identified 21 bacterial strains from ginseng seedlings. Leaves and rhizomes showed higher bacterial species diversity than root bodies and tails. While Bacillus strains were detected in all tissues, Xanthomonas and Micrococcaceae strains were specifically isolated from rhizome and leaf tissues, respectively. Fourteen bacterial strains showed antimicrobial activities against Cylindrocarpon destructans and/or Botrytis cinerea, with different activities. Among them, two strains (PgKB29 and PgKB35) showed strong antimicrobial activities against both fungi. Taken together, these results provide a better understanding of endophytic bacteria in P. ginseng seedlings and suggest the possibility of biological control of fungal pathogens using endophytic bacteria.  相似文献   

9.
Diseases caused by phytopathogenic microorganisms account for enormous losses for agribusiness. Although Bacillus species are recognized as being antimicrobial producers and some may provide benefits to plants, the association between Bacillus toyonensis and plants has not been studied. In this study, the whole-genome sequenced endophytic B. toyonensis BAC3151, which has demonstrated antimicrobial activity and quorum sensing inhibition of phytopathogenic bacteria, was investigated for its potential for the production of compounds for biocontrol of plant pathogens. Four whole-genome sequenced B. toyonensis strains shared 3811 protein-coding DNA sequences (CDSs), while strain-specific CDSs, such as biosynthetic gene clusters of antimicrobials, were associated with specific chromosomal regions and mobile genetic elements of the strains. B. toyonensis strains had a higher frequency of putative bacteriocins gene clusters than that of Bacillus species traditionally used for the production of antimicrobials. In addition, gene clusters potentially involved in the production of novel bacteriocins were found in BAC3151, as well as biosynthetic genes of several other compounds, including non-ribosomal peptides, N-acyl homoserine lactonase and chitinases, revealing a genetic repertoire for antimicrobial synthesis greater than that of other Bacillus strains that have demonstrated effective activity against phytopathogens. This study showed for the first time that B. toyonensis has potential to produce various antimicrobials, and the analyses performed indicated that the endophytic strain BAC3151 can be useful for the development of new strategies to control microbial diseases in plants that are responsible for large damages in agricultural crops.  相似文献   

10.
The composition and diversity of the endophytic community associated with yerba mate (Ilex paraguariensis) was investigated using culture-depending methods. Fungi were identified based on their micromorphological characteristics and internal transcribed spacer rDNA sequence analysis; for bacteria 16S rDNA sequence analysis was used. Fungal and bacterial diversity did not show significant differences between organ age. The highest fungal diversity was registered during fall season and the lowest in winter. Bacterial diversity was higher in stems and increased from summer to winter, in contrast with leaves, which decreased. The most frequently isolated fungus was Fusarium, followed by Colletotrichum; they were both present in all the sampling seasons and organ types assayed. Actinobacteria represented 57.5 % of all bacterial isolates. The most dominant bacterial taxa were Curtobacterium and Microbacterium. Other bacteria frequently found were Methylobacterium, Sphingomonas, Herbiconiux and Bacillus. Nitrogen fixation and phosphate solubilization activity, ACC deaminase production and antagonism against plant fungal pathogens were assayed in endophytic bacterial strains. In the case of fungi, strains of Trichoderma, Penicillium and Aspergillus were assayed for antagonism against pathogenic Fusarium sp. All microbial isolates assayed showed at least one growth promoting activity. Strains of Bacillus, Pantoea, Curtobacterium, Methylobacterium, Brevundimonas and Paenibacillus had at least two growth-promoting activities, and Bacillus, Paenibacillus and the three endophytic fungi showed high antagonistic activity against Fusarium sp. In this work we have made a wide study of the culturable endophytic community within yerba mate plants and found that several microbial isolates could be considered as potential inoculants useful for improving yerba mate production.  相似文献   

11.
Phytophagous insects and host plants have a complex of microsymbionts and make up a united co-evolving system with them. Microsymbiotic complexes are actively involved in stress responses of macrosymbionts. We established that a treatment of potato plants with endophytic bacterial strains Bacillus thuringiensis var. thuringiensis-5689, B. th. var. kurstaki-5351, and Bacillus subtilis 26D decreased the survival rate of the plant feeder, Colorado potato beetle Leptinotarsa decemlineata Say. The B. th. strains suppressed phenoloxidase and acetylcholinesterase activities in the beetle hemolymph. An antagonistic relationship was found between endophytic bacteria B. subtilis 26D and beetle symbiotic bacteria from the genera Acinetobacter and Enterobacter, with the former being able to suppress the growth of endophytic colonies. The recombinant B. subtilis strain 26D Cry, containing the B. th. var. kurstaki δ-endotoxin cry1Ia gene, combined the ability of the original B. subtilis 26D strain to suppress the development of beetle symbionts and immune responses with a production of the Cry toxin, thus leading to a high mortality of the phytophage.  相似文献   

12.
Species in Plectosphaerella are well known as pathogens of several plant species causing fruit, root and collar rot and collapse. In an investigation of endophytic fungi associated with cucurbit plants in China, we isolated 77 strains belonging to the genus Plectosphaerella. To identify the isolated strains, we collected the type or reference strains of all currently accepted species in Plectosphaerella except P. oratosquillae and conducted a phylogenetic analysis. Phylogenetic analysis of the partial 28S rDNA sequences showed that all species in Plectosphaerella were located in one clade of Plectosphaerellaceae. Based on multi-locus phylogenetic analysis of the ITS, CaM, EF1, TUB and morphological characteristics, all species in Plectosphaerella were well separated. Three endophytic strains from stems of Cucurbita moschata, Citrullus lanatus and Cucumis melo from North China were assigned to a new species described as P. sinensis in this paper. The new species differs morphologically from other Plectosphaerella species by irregular chlamydospores, and the dimensions of phialides and conidia. The other endophytic strains from several cucurbit plants were identified as P. cucumerina.  相似文献   

13.
Microbially unexplored medicinal plants can have a genetically diverse microbial population with multi-functional plant growth promoting traits. In this aspect, 75 endophytic bacterial isolates with plant growth promoting traits were isolated from Withania coagulans Dunal and Olea ferruginea Royal. Many of these bacteria were able to solubilize phosphate, produce indole-3-acetic acid, ammonia as well as hydrogen cyanide, synthesize extracellular enzymes and show antagonistic activities against plant pathogenic fungi under in vitro conditions. These isolates were also characterized by morphological and biochemical analysis. Furthermore, four representative isolates with pronounced plant growth promoting activities were identified as Enterobacter cloacae, Enterobacter dissolvens, Enterobacter hormaechei and Cronobacter sakazakii by 16S rDNA sequencing analysis. This work for the first time, reported the isolation of endophytic bacteria, the novel association form selected plants, Withania coagulans and Olea ferruginea. The explored endophytes might have great potential in the field of biocontrol and plant growth promoting for sustainable agricultural practices.  相似文献   

14.
Piriformospora indica, a root endophytic fungus, has been reported to promote growth of many plants under normal condition and allow the plants to survive under stress conditions. However, its impact on an important medicinal plant Aloe vera L. has not been well studied. Therefore, this study was undertaken to investigate the effect of P. indica on salinity stress tolerance of A. vera plant. P. indica inoculated and non-inoculated A. vera plantlets were subjected to four levels of salinity treatment- 0, 100, 200 and 300 mM NaCl. The salinity stress decreased the ability of the fungus to colonize roots of A. vera but the interaction of A. vera with P. indica resulted in an overall increase in plant biomass and greater shoot and root length as well as number of shoots and roots. The photosynthetic pigment (Chl a, Chl b and total Chl) and gel content were significantly higher for the fungus inoculated A. vera plantlets, at respective salinity concentrations. Furthermore, the inoculated plantlets had higher phenol, flavonoid, flavonol, aloin contents and radical scavenging activity at all salinity concentrations. The higher phenolic and flavonoid content may help the plants ameliorate oxidative stress resulting from high salinity.  相似文献   

15.
Knowledge of rhizobium diversity is helping to enable the utilization of rhizobial resources. To analyze the phenotypic and genetic diversity and the symbiotic divergence of rhizobia of Medicago sativa, 30 endophytic and non-endophytic isolates were collected from different parts of five alfalfa varieties in three geographic locations in Gansu, China. Numerical analyses based on 72 phenotypic properties and restriction fragment length polymorphism (RFLP) fingerprinting indicated the abundant phenotypic and genetic diversity of the tested strains. According to the phylogenetic analysis of 16S RNA, atpD, glnII, and recA gene sequences, Rhizobium and Ensifer were further classified into four different genotypes: Rhizobium radiobacter, Rhizobium sp., Rhizobium rosettiformans, and Ensifer meliloti. The differences in architecture and functioning of the rhizobial genomes and, to a lesser extent, environment diversification helped explain the diversity of tested strains. The tested strains exhibited similar symbiotic feature when inoculated onto M. sativa cvs. Gannong Nos. 3 and 9 and Qingshui plants for the clustering feature of their parameter values. An obvious symbiotic divergence of rhizobial strains was observed in M. sativa cvs. Longzhong and WL168HQ plants because of the scattered parameter values. Their symbiotic divergence differed according to alfalfa varieties, which indicated that the sensitivity of different alfalfa varieties to rhizobial strains may differ. Most of the tested strains exhibited plant growth-promoting traits including phosphate solubilization and production of indole-3-acetic acid (IAA) when colonizing plant tissues and soil.  相似文献   

16.
The aims of the study were to increase the biomass and to alleviate the deleterious effects of cadmium (Cd) in the switchgrass cultivars (Panicum virgatum L.) Alamo and Cave-in-Rock (CIR) under cadmium (Cd) stress using Cd-tolerant shoot endophytic plant growth-promoting bacteria (PGPB). Four shoot endophytic bacterial strains, viz. Bc09, So23, E02, and Oj24, were isolated from the above-ground parts of plants grown in a Cd-polluted soil and were successfully identified by 16S rRNA gene sequencing as Pseudomonas grimontii, Pantoea vagans, Pseudomonas veronii, and Pseudomonas fluorescens, respectively. These four strains were adapted to high CdCl2 concentrations as they had higher Cd uptake capacities. In addition, they possessed a huge amount of growth regulatory activities e.g., indole acetic acid production, 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) activity, and phosphate solubilization. Growth particularly the height and biomass of both cultivars increased significantly in response to PGPB inoculation in the 20 µM CdCl2 stress. The shoot biomass of the PGPB-inoculated Alamo was higher than the CIR under Cd stress. Interestingly, the level of Cd inside PGPB-inoculated plant tissues and the translocation factors were lower compared with the noninoculated Cd control plants. CIR plants exhibited higher Cd content than Alamo plants. Through confocal microscopy, green fluorescence was observed in roots and leaf tissues 2 days after the inoculation of green fluorescent protein (GFP)-labeled bacteria in Alamo, which confirmed the successful colonization of bacteria inside the plant tissues. These shoot endophytic PGPB and switchgrass interactions are useful for the sustainable biomass production of bioenergy crop in a Cd-contaminated environment.  相似文献   

17.
18.
Application of environmentally friendly agents to reduce the use of chemicals and to enhance growth of plants is an ultimate goal of sustainable agriculture. The use of plant growth-promoting endophytes has become of great interest as a way to enhance plant growth and additionally protect plants from phytopathogens. In this study, 135 isolates of endophytic bacteria including actinomycetes were isolated from roots of commercial sugarcane plants cultivated in Thailand and were characterized for plant growth-promoting (PGP) traits. Based on morphological and 16S rRNA sequence analysis, the endophytes were distributed into 14 genera of which the most dominant species belong to Bacillus, Enterobacter, Microbispora, and Streptomyces. Two strains of endophytic diazotrophs, Bacillus sp. EN-24 and Enterobacter sp. EN-21; and two strains of actinomycetes, Microbispora sp. GKU 823 and Streptomyces sp. GKU 895, were selected based on their PGP traits including 1-aminocyclopropane-1-decarboxylate deaminase, indole-3-acetic acid, nitrogen fixation, phosphate solubilization, and siderophore production for evaluation of sugarcane growth enhancement by individual and co-inoculation. Sixty days after co-inoculation by endophytic diazotrophs and actinomycetes, the growth parameters of sugarcane plants were significantly greater than that of individual and un-inoculated plants. The results indicated that these endophytes have high potential as PGP agents that could be applied to promote sugarcane growth and could be developed as active added value biofertilizers in the future.  相似文献   

19.
20.
Gentiana scabra Bge. (gentian) is a Chinese medicinal plant. Endophytic fungi from the roots of gentian were isolated and cross-growth period inoculation was performed to study the roles of three Trichoderma spp. strains (F1, F2, and F9) in their original host plant. In treatments inoculated with F1, F2, and F9, gentiopicroside content increased 33.6, 23.7 and 13% than that in the control. Strains F1, F2, and F9 could also improve polysaccharide content by more than 6.6, 18.7 and 30% compared to the control. The incidence of spot blight in gentian inoculated with F1, F2, and F9 decreased by 31.2, 26.7 and 8.5%. Inconsistent changes in the activity of the three enzymes (superoxide dismutase, catalase and peroxidase) were observed when the plants were attacked by pathogens or inoculated with fungi. High enzymatic activity did not reflect mild disease. Cross-growth period inoculation, which takes into account the original living environment (gentian plant as “substrate” and different microorganisms as symbionts) of endophytic fungi, provides a new idea for studying effects of endophytes on their original hosts. This is the first research about the role of endophytic fungi in Gentiana scabra bge. in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号