Artificial selection (domestication and breeding) leaves a strong footprint in plant genomes. Second generation high throughput
DNA sequencing technologies make it possible to sequence the gene complement of a plant genome within 3 to 5 months, and the
costs of doing so are declining very quickly. This makes it practical to identify genomic regions that have undergone very
strong selection. Available reference sequences of important crops such as rice, maize, and sorghum will promote the wide
use of re-sequencing strategies in these crops. Marker/trait associations, especially haplotype (or haplotype block) association
analyses, will help the precise mapping of important genomic regions and location of favored alleles or haplotypes for breeding.
This mini-review examines a genomics approach to defining yield traits in wheat. 相似文献
Plants are attractive hosts for the production of recombinant proteins. However, their inability to process authentic human N-glycan structures imposes a major limitation on their use as expression systems for therapeutic products. Several strategies have emerged to engineer plant N-glycans into human-compatible molecules. In this context, fast and reliable analytical strategies for the identification of plant N-glycan profiles have been developed to define the N-glycosylation pathways of crops, to monitor the production of plant-made pharmaceuticals and to assess in planta remodelling strategies. 相似文献
The aim of this review is to critically assess the benefits and limitations associated with the use of in vitro plant cell and organ cultures as research tools in phytoremediation studies. Plant tissue cultures such as callus, cell suspensions, and hairy roots are applied frequently in phytoremediation research as model plant systems. In vitro cultures offer a range of experimental advantages in studies aimed at examining the intrinsic metabolic capabilities of plant cells and their capacity for toxicity tolerance. The ability to identify the contributions of plant cells to pollutant uptake and detoxification without interference from microorganisms is of particular significance in the search for fundamental knowledge about plants. However, if the ultimate goal of plant tissue culture experiments is the development of practical phytoremediation technology, the limitations inherent in the use of in vitro cultures as a representative of whole plants in the field must be recognized. The bioavailability of contaminants and the processes of pollutant uptake and metabolite distribution are likely to be substantially different in the two systems; this can lead to qualitative as well as quantitative differences in metabolic profiles and tolerance characteristics. Yet, many studies have demonstrated that plant tissue cultures are an extremely valuable tool in phytoremediation research. The results derived from tissue cultures can be used to predict the responses of plants to environmental contaminants, and to improve the design and thus reduce the cost of subsequent conventional whole plant experiments. Biotechnol. Bioeng. 2009;103: 60–76. 相似文献
The fungus Fusarium fujikuroi causes bakanae disease of rice due to its ability to produce the plant hormones, the gibberellins. The fungus is also known for producing harmful mycotoxins (e.g., fusaric acid and fusarins) and pigments (e.g., bikaverin and fusarubins). However, for a long time, most of these well-known products could not be linked to biosynthetic gene clusters. Recent genome sequencing has revealed altogether 47 putative gene clusters. Most of them were orphan clusters for which the encoded natural product(s) were unknown. In this review, we describe the current status of our research on identification and functional characterizations of novel secondary metabolite gene clusters. We present several examples where linking known metabolites to the respective biosynthetic genes has been achieved and describe recent strategies and methods to access new natural products, e.g., by genetic manipulation of pathway-specific or global transcritption factors. In addition, we demonstrate that deletion and over-expression of histone-modifying genes is a powerful tool to activate silent gene clusters and to discover their products.
Highlights► Comparative genomics can help predict the function of unknown plant metabolic genes. ► Functional gene annotations are foundational to the construction of metabolic models. ► Models can simulate effects of genetic changes and thus guide metabolic engineering. ► Examples of comparative genomics facilitating gene discovery in plants are presented. 相似文献
Summary In vitro cultures are being considered as an alternative to agricultural processes for producing valuable secondary metabolites.
Most efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots.
Bioreactors used to culture hairy roots can be roughly divided into three types: liquid-phase, gas-phase, or hybrid reactors
that are a combination of both. The growth and productivity of hairy root cultures are reviewed with an emphasis on successful
bioreactors and important culture considerations. The latter include strain selection, production of product in relation to
growth phase, media composition, the gas regime, use of elicitors, the role of light, and apparent product loss. Together
with genetic engineering and process optimization, proper reactor design plays a key role in the development of successful
large scale production of secondary metabolites from plant cultures. 相似文献
Plants and plant tissue cultures are used as host systems for expression of foreign proteins including antibodies, vaccines and other therapeutic agents. Recombinant or stably transformed plants and plant cell cultures have been applied for foreign protein production for about 20 years. Because the product concentration achieved exerts a major influence on process economics, considerable efforts have been made by commercial and academic research groups to improve foreign protein expression levels. However, post-synthesis product losses due to protease activity within plant tissues and/or extracellular protein adsorption in plant cell cultures can negate the benefits of molecular or genetic enhancement of protein expression. Transient expression of foreign proteins using plant viral vectors is also a practical approach for producing foreign proteins in plants. Adaptation of this technology is required to allow infection and propagation of engineered viruses in plant tissue cultures for transient protein expression in vitro. 相似文献
Cell-free extracts of seedlings exhibited enzyme activities for the following reactions: S-adenosyl-L-methionine (SAM) decarboxylation, spermidine synthesis from decarboxylated SAM and putrescine, and 5′-methylthioadenosine hydrolysis to 5-S-methyl-5-thio-D-ribose and adenine. SAM decarboxylation was stimulated by putrescine and inhibited by semicarbazide. The 15-fold purified ribohydrolase possessed a Km of 1. 03 × 10?5 M and a high specificity for 5′-methylthioadenosine. 相似文献
Drug metabolism is the major determinant of drug clearance, and the factor most frequently responsible for inter-individual differences in drug pharmacokinetics. The expression of drug metabolising enzymes shows significant interspecies differences, and variability among human individuals (polymorphic or inducible enzymes) makes the accurate prediction of the metabolism of a new compound in humans difficult. Several key issues need to be addressed at the early stages of drug development to improve drug candidate selection: a) how fast the compound will be metabolised; b) what metabolites will be formed (metabolic profile); c) which enzymes are involved and to what extent; and d) whether drug metabolism will be affected directly (drug-drug interactions) or indirectly (enzyme induction) by the administered compound. Drug metabolism studies are routinely performed in laboratory animals, but they are not sufficiently accurate to predict the metabolic profiles of drugs in humans. Many of these issues can now be addressed by the use of relevant human in vitro models, which speed up the selection of new candidate drugs. Human hepatocytes are the closest in vitro model to the human liver, and they are the only model which can produce a metabolic profile of a drug which is very similar to that found in vivo. However, the use of human hepatocytes is restricted, because limited access to suitable tissue samples prevents their use in high throughput screening systems. The pharmaceutical industry has made great efforts to develop fast and reliable in vitro models to overcome these drawbacks. Comparative studies on liver microsomes and cells from animal species, including humans, are very useful for demonstrating species differences in the metabolic profile of given drug candidates, and are of great value in the judicious and justifiable selection of animal species for later pharmacokinetic and toxicological studies. Cytochrome P450 (CYP)-engineered cells (or microsomes from CYP-engineered cells, for example, Supersomes) have made the identification of the CYPs involved in the metabolism of a drug candidate more straightforward and much easier. However, the screening of compounds acting as potential CYP inducers can only be conducted in cellular systems fully capable of transcribing and translating CYP genes. 相似文献
? Overexpression of AtPAP2, a purple acid phosphatase (PAP) with a unique C-terminal hydrophobic motif in Arabidopsis, resulted in earlier bolting and a higher seed yield. Metabolite analysis showed that the shoots of AtPAP2 overexpression lines contained higher levels of sugars and tricarboxylic acid (TCA) metabolites. Enzyme assays showed that sucrose phosphate synthase (SPS) activity was significantly upregulated in the overexpression lines. The higher SPS activity arose from a higher level of SPS protein, and was independent of SnRK1. ? AtPAP2 was found to be targeted to both plastids and mitochondria via its C-terminal hydrophobic motif. Ectopic expression of a truncated AtPAP2 without this C-terminal motif in Arabidopsis indicated that the subcellular localization of AtPAP2 is essential for its biological actions. ? Plant PAPs are generally considered to mediate phosphorus acquisition and redistribution. AtPAP2 is the first PAP shown to modulate carbon metabolism and the first shown to be dual-targeted to both plastids and mitochondria by a C-terminal targeting signal. ? One PAP-like sequence carrying a hydrophobic C-terminal motif could be identified in the genome of the smallest free-living photosynthetic eukaryote, Ostreococcus tauri. This might reflect a common ancestral function of AtPAP2-like sequences in the regulation of carbon metabolism. 相似文献
The purpose of the presentation is to interconnect and illuminate certain parts of metabolism regarding stress signalling and defensive functions, including secondary metabolism in intact plants and plant tissue cultures. Increased cell/tissue levels of reactive oxygen species like H2O2, O2- and ·OH and the metabolism of glutathione, are linked to defensive/secondary metabolism and tissue differentiation. Special attention is paid to nicotinamide. A hypothetical role of nicotinamide and its metabolites as stress signals is also put forward especially in connection with hypomethylation of DNA. A role of DNA hypomethylation, as a link between various types of stressors and the induction of plant devensive metabolism, is discussed. We suggest that nicotinamide or nicotinamide based substances may be of value within biotechnology for the production of valuable substances as well as for plant protection.Abbreviations BSO
buthionine sulfoximine
- CHS
chalcone synthase
- GSH
reduced glutathione
- GSSG
oxidized glutathione
- INA
isonicotinic acid
- NIC
nicotinamide
- PADPRP
poly(ADP-ribose)polymerase
- PAL
phenylalanine ammonia-lyase
- SA
salicylic acid
- SAM
S-adenosylmethionine
- SSB
single strand breakage 相似文献
A rapid in vitro propagation system leading to the formation of shoots, calli, roots, cell suspensions and plantlets was developed for the Andean medicinal plant Fabiana imbricata (Solanaceae). Massive propagation of shoots and roots was achieved by the temporary immersion system (TIS), morphogenesis and maintenance of cell suspensions by standard in vitro culture techniques. Oleanolic acid (OA), rutin, chlorogenic acid (CA) and scopoletin content in aerial parts of wild growing Fabiana imbricata plants as well as in plantlets regenerated in vitro, callus cultures, cell suspensions and biomass, obtained by the TIS system was assessed by HPLC. On a dry weight basis, the OA content in the aerial parts of the plant ranged between 2.26 and 3.47% while in vitro plantlets, callus and root cultures presented values ranging from not detected up to 0.14%. The rutin content of the samples presented a similar trend with maxima between 0.99 and 3.35% for the aerial parts of the plants to 0.02 to 0.20% for plantlets, 0.12% for cell suspensions and 0.28% for callus. Rutin was not detected in the roots grown by the TIS principle. The CA and scopoletin content in the aerial parts of F. imbricata ranged between 0.22-1.15 and < 0.01-0.55%, respectively. In the plantlets, the concentration of CA was 0.29 to 1.48% with scopoletin in the range 0.09 to 0.64% while in the callus sample, the CA and scopoletin content were 0.46 and 0.66%, respectively. A very different result was found in roots grown by TIS, where both OA and rutin were not detected and its main secondary metabolite, scopoletin was found between a range of 0.99 and 1.41% with CA between of 0.11 and 0.42%. 相似文献
Graminicides belonging to the cyclohexanedione and aryloxyphenoxypropionate classes are well established to act by disrupting acyl lipid biosynthesis via specific inhibition of acetyl-CoA carboxylase. Species of grass inherently resistant to such herbicides, or biotypes of grassy weed species which display acquired resistance to recommended rates of graminicide application, are known to possess an altered plastidic multifunctional acetyl-CoA carboxylase showing reduced sensitivity to these herbicides in vitro. Studies reported here demonstrate that cell suspension cultures of maize, a graminicide-sensitive species and Poa annua, a graminicide-insensitive species, display a similar differential sensitivity of acyl lipid biosynthesis as tissue from corresponding intact plants. Acyl lipid biosynthesis in P. annua can be inhibited if sufficiently high concentrations of graminicide are used. The major plastidic form and the minor cytosolic forms of acetyl-CoA carboxylase were successfully purified from maize cell suspensions, were compared to those from leaf tissue and were shown to be differentially inhibited by graminicides in a similar manner to their counterparts from leaf tissue. These studies demonstrate that cell suspensions are useful for studying the mode of action of graminicides, especially in view of the limited amount of material obtainable from many grassy species which are very fine-growing. 相似文献
Triacontanol [CH3(CH2)28CH2OH] increased growth in vitro of cell cultures of haploid tobacco (Nicotiana tabacum). The fresh weight of cell cultures of tomato (Lycopersicon esculentum), potato (Solanum tuberosum), bean (Phaseolus vulgaris), and barley (Hordeum vulgare x H. jubatum) was also increased. The increase in growth of tobacco callus seems to have been due to an increase in cell number. Another long chain alcohol, octocosanol [CH3(CH2)26CH2OH], did not increase the growth of tobacco cell cultures. 相似文献