共查询到20条相似文献,搜索用时 10 毫秒
1.
A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program. 相似文献
2.
3.
Xiufang Liu Yunzhi Song Fangyu Xing Ning Wang Fujiang Wen Changxiang Zhu 《Protoplasma》2016,253(5):1265-1281
4.
5.
6.
7.
8.
9.
Chengcheng Li Shenghao Liu Xinghao Yao Jing Wang Tailin Wang Zhaohui Zhang Pengying Zhang Kaoshan Chen 《Plant Growth Regulation》2017,81(3):489-499
In the condition of prolonged drought stress during the reproductive stage, we addressed the photosynthetic performance in flag leaves of the high-yield hybrid rice (Oryza sativa L.) LYPJ. The chlorophyll a fluorescence transient dynamics analysis indicated a timely and constant responsive pattern involving in both PSI and PSII. For PSII functionality, uncoupling of oxygen evolving complex at the donor side and inhibition of electron transport from QA to QB at the accepter side were both accounted for the decrease of quantum yield of primary photochemistry at early stage (before 21 days after the onset of drought stress). Likewise, increased size of functional antenna may be primarily responsible for early reaction centers inactivation in drought stressed plants, but transformation to non-QA-reducing centers for the later. The consequent redundant excitation energy was predominantly eliminated by the increasing thermal dissipation. Advanced accumulation of drought stress (from 21 to 35 days) showed preferential impact on the donor side of PSII and significant loss of RC/CS0 was induced during this period. In brief, up-regulation of thermal dissipation and possible cyclic electron transport, as well as down-regulation of activated reaction centers and linear electron transport was crucial for rebalance the energy distribution between the two photosystems from deviant stoichiometry resulting from the uncoupling of oxygen evolving complex. 相似文献
10.
11.
Om Prakash Narayan Nidhi Kumari Poonam Bhargava Hema Rajaram Lal Chand Rai 《Functional & integrative genomics》2016,16(1):67-78
DNA-binding proteins (Dps) induced during starvation play an important role in gene regulation and maintaining homeostasis in bacteria. The nitrogen-fixing cyanobacterium, Anabaena PCC7120, has four genes annotated as coding for Dps; however, the information on their physiological roles is limiting. One of the genes coding for Dps, ‘all3940’ was found to be induced under different abiotic stresses in Anabaena and upon overexpression enhanced the tolerance of Anabaena to a multitude of stresses, which included salinity, heat, heavy metals, pesticide, and nutrient starvation. On the other hand, mutation in the gene resulted in decreased growth of Anabaena. The modulation in the levels of All3940 in Anabaena, achieved either by overexpression of the protein or mutation of the gene, resulted in changes in the proteome, which correlated well with the physiological changes observed. Proteins required for varied physiological activities, such as photosynthesis, carbon-metabolism, oxidative stress alleviation, exhibited change in protein profile upon modulation of All3940 levels in Anabaena. This suggested a direct or an indirect effect of All3940 on the expression of the above stress-responsive proteins, thereby enhancing tolerance in Anabaena PCC7120. Thus, All3940, though categorized as a Dps, is possibly a general stress protein having a global role in regulating tolerance to multitude of stresses in Anabaena. 相似文献
12.
Dhanawantari L. Singha Narendra Tuteja Dimple Boro Girindra Nath Hazarika Salvinder Singh 《Plant Cell, Tissue and Organ Culture》2017,128(3):577-587
Jerusalem artichoke (Helianthus tuberosus L.) cultivars are conserved in genebanks for use in breeding and horticultural research programs. Jerusalem artichoke collections are particularly vulnerable to environmental and biological threats because they are often maintained in the field. These field collections could be securely conserved in genebanks if improved cryopreservation methods were available. This work used four Jersualem artichoke cultivars (‘Shudi’, ‘M6’, ‘Stampede’, and ‘Relikt’) to improve upon an existing procedure. Four steps were optimized and the resulting procedure is as follows: preculture excised shoot tips (2–3 mm) in liquid MS medium supplemented with 0.4 M sucrose for 3 days, osmoprotect shoot tips in loading solution for 30 min, dehydrate with plant vitrification solution 2 for 15 min before rapid cooling in liquid nitrogen, store in liquid nitrogen, rapidly rewarm in MS liquid medium containing 1.2 M sucrose, and recover on MS medium supplemented with 0.1 mg L?1 GA3 for 3–5 days in the dark and then on the same medium for 4–6 weeks in the light (14 h light/10 h dark). After cryopreservation, Jerusalem artichoke cultivar ‘Shudi’ had the highest survival (93%) and regrowth (83%) percentages. Cultivars ‘M6’, ‘Stampede’, and ‘Relikt’ achieved survival and regrowth percentages ranging from 44 to 72%, and 37–53%, respectively. No genetic changes, as assessed by using simple sequence repeat markers, were detected in plants regenerated after LN exposure in Jerusalem artichoke cultivar ‘Shudi’. Differential scanning calorimetry analyses were used to investigate the thermal activities of the tissues during the cryopreservation process and it was determined that loading with 2.0 M sucrose and 0.4 M sucrose dehydrated the shoot tips prior to treatment with PVS2. Histological observations revealed that the optimized droplet vitrification protocol caused minimal cellular damage within the meristem cells of the shoot tips. 相似文献
13.
Jian-Xia Zhang Kun-Lin Wu Li-Ning Tian Song-Jun Zeng Jun Duan 《Acta Physiologiae Plantarum》2011,33(2):409-417
14.
Syntrichia caninervis Mitt. is the dominant species in the moss crusts of the Gurbantunggut Desert, Northwestern China. We experimented with this
species under controlled environmental conditions. Modulated chlorophyll (Chl) fluorescence was used to test the speed of
recovery as evidenced by the time course of photosynthetic activity following remoistening. Transmission electron microscopy
was used to explore the cytological characteristics of the leaf cells. Minimum and maximum fluorescence (F0 and FM) and photosynthetic yield (FV/FM) of photosystem II (PSII) recovered quickly when shoots were remoistened in the dark. This was especially the case of FV/FM; within the first minute of remoistening this reached 90% or more of the value attained after 30 min. These physiological
changes were closely paralleled by cytological changes that indicated no damage to membranes or organelles. Correlation analysis
showed that Chl fluorescence decreased both above and below a narrow moisture optimum. Our results underline the capability
of S. caninervis to photosynthesize after remoistening. Utilizing precipitation events such as dew, fog, rain, and melting snow allows S. caninervis to survive and grow in a harsh desert environment. 相似文献
15.
Gurusamy Dhandapani Azhagiyamanavalan Lakshmi Prabha Mogilicherla Kanakachari Mullapudi Lakshmi Venkata Phanindra Narayanasamy Prabhakaran Sellamuthu Gothandapani Kethireddy Venkata Padmalatha Amolkumar U. Solanke Polumetla Ananda Kumar 《Biotechnology letters》2015,37(4):907-919
A novel stress tolerance cDNA fragment encoding GhDRIN1 protein was identified and its regulation was studied in cotton boll tissues and seedlings subjected to various biotic and abiotic stresses. Phylogenetic and conserved domain prediction indicated that GhDRIN1 was annotated with a hypothetical protein of unknown function. Subcellular localization showed that GhDRIN1 is localized in the chloroplasts. The promoter sequence was isolated and subjected to in silico study. Various cis-acting elements responsive to biotic and abiotic stresses and hormones were found. Transgenic tobacco seedlings exhibited better growth on amended MS medium and showed minimal leaf damage in insect bioassays carried out with Helicoverpa armigera larvae. Transgenic tobacco showed better tolerance to water-deficit and fast recovered upon rewatering. Present work demonstrated that GhDRIN1, a novel stress tolerance gene of cotton, positively regulates the response to biotic and abiotic stresses in transgenic tobacco. 相似文献
16.
The ecology and physiology of ectomycorrhizal (EcM) symbiosis with conifer trees are well documented. In comparison, however,
very little is known about the molecular regulation of these associations. In an earlier study, we identified three EcM-regulated
Pinus expressed sequence tags (EST), two of which were identified as homologous to the Medicago truncatula nodulin MtN21. The third EST was a homologue to the receptor-like kinase Clavata1. We have characterized the expression patterns of these genes and of auxin- and mycorrhiza-regulated genes after induction
with indole-3-butyric acid in Pinus sylvestris and in a time course experiment during ectomycorrhizal initiation with the co-inoculation of 2,3,5-triiodobenzoic acid, an
auxin transport inhibitor. Our results suggest that different P. sylvestris nodulin homologues are associated with diverse processes in the root. The results also suggest a potential role of the Clv1-like gene in lateral root initiation by the ectomycorrhizal fungus. 相似文献
17.
High salinity is an environmental factor that inhibits plant growth and development, leading to large losses in crop yields.
We report here that mutations in SIZ1 or PHO2, which cause more accumulation of phosphate compared with the wild type, enhance tolerance to salt stress. The siz1 and pho2 mutations reduce the uptake and accumulation of Na+. These mutations are also able to suppress the Na+ hypersensitivity of the sos3-1 mutant, and genetic analyses suggest that SIZ1 and SOS3 or PHO2 and SOS3 have an additive effect on the response to salt stress. Furthermore, the siz1 mutation cannot suppress the Li+ hypersensitivity of the sos3-1 mutant. These results indicate that the phosphate-accumulating mutants siz1 and pho2 reduce the uptake and accumulation of Na+, leading to enhanced salt tolerance, and that, genetically, SIZ1 and PHO2 are likely independent of SOS3-dependent salt signaling. 相似文献
18.
Chunbao Zhang Hongkun Zhao Yanzhi Liu Qiyun Li Xiaodong Liu Hua Tan Cuiping Yuan Yingshan Dong 《Biotechnology letters》2010,32(6):861-866
A novel glycogen synthase kinase-3 gene, GmGSK, was isolated from Glycine
max. It is 1,596 bp in length with one ORF of 410 amino acids. Southern blot analysis revealed that it has at least two copies
in the G. max genome. GmGSK, when transiently expressed in Nicotiana tabacum leaves, was localized in both cell membrane and cytoplasm. Northern blot analysis indicated that GmGSK is expressed in all tissues, with highest expression in the root. GmGSK can be induced by various abiotic stresses. When transformed with GmGSK, Saccharomyces cerevisiae exhibited enhanced resistance to salt and drought stress. 相似文献
19.
Wen XP Pang XM Matsuda N Kita M Inoue H Hao YJ Honda C Moriguchi T 《Transgenic research》2008,17(2):251-263
An apple spermidine synthase (SPDS) gene (MdSPDS1) was verified to encode a functional protein by the complementation of the spe3 yeast mutant, which lacks the SPDS gene. To justify our hypothesis that apple SPDS is involved in abiotic stress responses and to obtain transgenic fruit trees
tolerant to abiotic stresses as well, MdSPDS1-over-expressing transgenic European pear (Pyrus communis L. ‘Ballad’) plants were created by Agrobacterium-mediated transformation. A total of 21 transgenic lines showing various spermidine (Spd) titers and MdSPDS1 expression levels were obtained. Selected lines were exposed to salt (150 mM NaCl), osmosis (300 mM mannitol), and heavy
metal (500 μM CuSO4) stresses for evaluating their stress tolerances. Transgenic line no. 32, which was revealed to have the highest Spd accumulation
and expression level of MdSPDS1, showed the strongest tolerance to these stresses. When growth increments, electrolyte leakage (EL), and values of thiobarbituric
acid reactive substances (TBARS) were monitored, line no. 32 showed the lowest growth inhibition and the least increase in
EL or TBARS under stress conditions. Spd titers in wild-type and transgenic lines showed diverse changes upon stresses, and
these changes were not consistent with the changes in MdSPDS1 expressions. Moreover, there were no differences in the sodium concentration in the shoots between the wild type and line
no. 32, whereas the copper concentration was higher in the wild type than in line no. 32. Although the mechanism(s) underlying
the involvement of polyamines in stress responses is not known, these results suggest that the over-expression of the SPDS gene substantially increased the tolerance to multiple stresses by altering the polyamine titers in pear. Thus, MdSPDS1-over-expressing transgenic pear plants could be used to improve desert land and/or to repair polluted environments.
Xiao-Peng Wen and Xiao-Ming Pang contributed equally to this work. 相似文献
20.
Feibing Wang Gaolei Ren Fengsheng Li Sitong Qi Yan Xu Bowen Wang Yulin Yang Yuxiu Ye Qing Zhou Xinhong Chen 《Acta Physiologiae Plantarum》2018,40(5):97
Chalcone synthase (CHS) is one of the key enzymes in flavonoid biosynthesis pathway in plants. However, the roles of AeCHS gene from Abelmoschus esculentus in flavonoid accumulation and tolerance to abiotic stresses have not been studied. In this study, the AeCHS gene was cloned from Abelmoschus esculentus. The open reading frame contained 1170 nucleotides encoding 389 amino acids. The coding region of AeCHS was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis to obtain transgenic plants. Overexpression of AeCHS increased the production of downstream flavonoids and the expression of related genes in the flavonoid biosynthesis pathway. It also improved resistance to salt and mannitol stresses during seed germination and root development. Further component and enzymatic analyses showed the decreased content of H2O2 and malondialdehyde and the increased activities of superoxide dismutase (SOD) and peroxidase (POD) in transgenic seedlings. Meanwhile, the expression level of AtSOD and AtPOD genes was up-regulated against salt and osmotic stresses. Together, our finding indicated that changing the expression level of AeCHS in plants alters the accumulation of flavonoids and regulates plantlet tolerance to abiotic stress by maintaining ROS homeostasis. The AeCHS gene has the potential to be used to increase the content of valuable flavonoids and improve the tolerance to abiotic stresses in plants. 相似文献