首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: The objective of the present study was to investigate the influence of aeration rate and agitation intensity on the production of mycelial biomass and exopolysaccharide (EPS) in Paecilomyces sinclairii. METHODS AND RESULTS: The P. sinclairii was cultivated under various aeration and agitation conditions in a 5 l stirred-tank bioreactor. The highest mycelial biomass (30.5 g l-1) and EPS production (11.5 g l-1) were obtained at a high aeration rate (3.5 v.v.m.) and at a high agitation speed (250 rev min-1). The apparent viscosities (6000-8000 cP) of fermentation broth increased rapidly towards the end of fermentations at high aeration and agitation conditions. CONCLUSIONS: The high level of dissolved oxygen achieved at a high aeration rate (3.5 v.v.m.) associated with higher hyphal density eventually resulted in enhanced EPS production. Agitation intensity was also proved to be a critical factor influencing on both the mycelial biomass and EPS production: high agitation speeds up to 250 rev min-1 were preferred to the yields of biomass and EPS production. SIGNIFICANCE AND IMPACT OF THE STUDY: The critical effects of aeration and agitation in the culture process of P. sinclairii were found, which is widely applicable to other kinds of basidiomycetes or ascomycetes in their submerged culture processes.  相似文献   

2.
The growth kinetics of Streptomyces noursei NRRL 5126 was investigated under different aeration and agitation combinations in a 5.0 l stirred tank fermenter. Poly-epsilon-lysine biosynthesis, cell mass formation, and glycerol utilization rates were affected markedly by both aeration and agitation. An agitation speed of 300 rpm and aeration rate at 2.0 vvm supported better yields of 1,622.81 mg/l with highest specific productivity of 15 mg/l.h. Fermentation kinetics performed under different aeration and agitation conditions showed poly- epsilon-lysine fermentation to be a growth-associated production. A constant DO at 40% in the growth phase and 20% in the production phase increased the poly-epsilon-lysine yield as well as cell mass to their maximum values of 1,992.35 mg/l and 20.73 g/l, respectively. The oxygen transfer rate (OTR), oxygen utilization rate (OUR), and specific oxygen uptake rates (qO2) in the fermentation broth increased in the growth phase and remained unchanged in the stationary phase.  相似文献   

3.
Influence of oxygen mass transfer intensity characterized by the rate of oxygen dissolution (S) and the agitation rate (n), as well as influence of dissolved oxygen concentration on the process of amphotericin B biosynthesis was studied. It was shown that S = 40 and 110 mg/l. min and n = 450 and 800 min-1 were respectively the lower and the upper levels of the optimal conditions by oxygen mass transfer during amphotericin B biosynthesis. When biosynthesis of amphotericin B was conducted under conditions of the optimal oxygen mass transfer, the dissolved oxygen concentration of about 12 to 15 per cent of the saturation level was critical for the culture respiration. Inhibition of the culture respiration and antibiotic synthesis was induced under conditions of increased oxygen mass transfer intensity (S greater than 110 mg/l. min and n greater than 800 min-1) by high intensity mechanical agitation of the fermentation broth. Under conditions of decreased oxygen mass transfer (S less than 40 mg/l. min and n = less than 450 min-1) it was induced by insufficient supply of oxygen to the culture. On the basis of the results it was shown possible to control the aeration and agitation conditions by the rate of oxygen uptake and dissolved oxygen concentration. The data should be considered in optimization of aeration and agitation conditions in biosynthesis of amphotericin B in large fermenters.  相似文献   

4.
The results of the experiments on determination of the effect of aeration and agitation conditions on biosynthesis of tetracycline in the apparatus of semi-production capacity are discussed. It was shown that the antibiotic production level was not connected with the rate of oxygen solution expressed in the sulphite numbers, i.e. this parameter cannot be used as a scaling-up criterion. Accumulation of the antibiotic in the fermentation broth depended on the volume of the air supplied for aeration. It was determined that the level of CO2 dissolved in the fermentation broth did not reach the values having an inhibitory effect on the biosynthetic process.  相似文献   

5.
The main purpose of the work reported here was to establish the effectiveness of aeration and agitation, and to determine the best conditions of aeration for the growth and production of glucose oxidase of Aspergillus niger, on a semi-industrial scale. Concentration of dissolved O2, O2 consumption and CO2 production were measured. It was found that the rate of growth and the activity of glucose oxidase per gram mycelium increased with the increase of speed of agitation. The concentration of dissolved oxygen of the fermentation broth, as well as the rate of respiration (O2 consumption and CO2 production) increased in direct proportion to the increase of speed of agitation, while assimilation of sugars was accelerated. The values of the respiratory ratio showed a fluctuation according to the presence or absence of sugar in the medium.  相似文献   

6.
The paper reports the measurement of biomass concentration using a laser turbidity probe. A suspension of Bakers’ yeast (0.5?50?gl-1) was subjected to various conditions of agitation and aeration in a stirred tank reactor and the turbidity measured using the probe. Both agitation and aeration were found to influence the turbidity. At any constant biomass concentration, the effect on the turbidity measurement of changing agitation or aeration rate independently was linear, while at any constant conditions of agitation and aeration rate, the relationship between turbidity and biomass concentration was non-linear. The results indicate that, in a bioprocess with non-particulate medium, it is possible to correct for the effects of aeration and agitation on turbidity measurement using a multivariate calibration model. A procedure for calibration and correction of measurements for the effects of agitation and aeration is presented and is verified using experimental data. This procedure may be generalised for other applications.  相似文献   

7.
Pellet growth of Aspergillus terreus ATCC 20542 in submerged batch fermentations in stirred bioreactors was used to examine the effects of agitation (impeller tip speed u(t) of 1.01-2.71 ms(-1)) and aeration regimens (air or an oxygen-enriched mixture containing 80% oxygen and 20% nitrogen by volume) on the fungal pellet morphology, broth rheology and lovastatin production. The agitation speed and aeration methods used did not affect the biomass production profiles, but significantly influenced pellet morphology, broth rheology and the lovastatin titers. Pellets of approximately 1200 microm initial diameter were reduced to a final stable size of approximately 900 microm when the agitation intensity was >/=600 rpm (u(t)>/=2.03 ms(-1)). A stable pellet diameter of approximately 2500 microm could be attained in less intensely agitated cultures. These large fluffy pellets produced high lovastatin titers when aerated with oxygen-enriched gas but not with air. Much smaller pellets obtained under highly agitated conditions did not attain high lovastatin productivity even in an oxygen-enriched atmosphere. This suggests that both an upper limit on agitation intensity and a high level of dissolved oxygen are essential for attaining high titers of lovastatin. Pellet size in the bioreactor correlated equally well with the specific energy dissipation rate and the energy dissipation circulation function. The latter took into account the frequency of passage of the pellets through the high shear regions of the impellers. Pellets that gave high lovastatin titers produced highly shear thinning cultivation broths.  相似文献   

8.
The effects of aeration and agitation on the production and molecular weight of poly (γ-glutamic acid) (PGA) were systematically investigated in batch fermentor cultures of Bacillus licheniformis NCIM 2324. A high aeration rate and agitation speed enhanced the growth of B. licheniformis NCIM 2324, but did not always lead to high PGA production. Additionally, PGA production actually decreased at very high aeration rates and agitation speeds. The maximum PGA concentration was obtained at 750 rpm and 1 vvm. Rheological studies revealed that fermentation broth during production of PGA exhibited pseudoplastic behavior. The effects of aeration and agitation on the molecular weight of PGA were also studied, and the rate and extent of the decrease in the molecular weight of PGA as a function of time were found to be much greater at high aeration than low aeration. The PGA production of 46.34 g/L with a specific productivity of 0.17 g-PGA/g-biomass/ h and a PGA yield of 0.48 with respect to total substrate observed in the present study are much higher than the values reported in previously conducted studies.  相似文献   

9.
Summary An investigation of the performance of air-lift fermenters showed that the value of the oxygen mass transfer coefficient (KLa) increased with both the aeration rate and vessel size. Although some change in the liquid circulation pattern occurred with increasing superficial gas velocity, there was no transition from bubbly to slug flow over the range of superficial gas velocities studied. Increases in broth viscosity caused an increase in gas hold up and a reduction in the values for KLa, although this reduction was not as great as that observed in mechanically agitated fermenters. Under conditions of aeration and agitation which gave comparable KLa values similar biomass yields of Aspergillus oryzae were obtained in 7.25 l and 100 l air-lift fermenters, and in a 3.5 l mechanically agitated fermenter.  相似文献   

10.
Effects of agitation and aeration rates on volumetric oxygen transfer coefficient and oxygen uptake rate of a riboflavin broth containing Ashbya gossypii were investigated in three batch, sparged, and agitated fermentors having the working volumes of 0.42, 0.85, and 2.5 l. The change of oxygen uptake rate with time at 250 rev min−1 stirring and vvm aeration rates was shown. The volumetric oxygen transfer coefficients and maximum oxygen uptake rates obtained have been correlated to mechanical power inputs per unit volume of the fermentation broth and the superficial air velocities.  相似文献   

11.
The optimization of submerged culture conditions for mycelial growth and exopolysaccharide (EPS) production in an edible mushroom Tremella fuciformis was studied in shake flasks and bioreactors. The temperature of 28 degrees C and pH 8 in the beginning of fermentation in agitated flasks was the most efficient condition to obtain maximum mycelial biomass and EPS. The optimal medium constituents were as follows (gL(-1)): glucose 20, tryptone 2, KH(2)PO(4) 0.46, K(2)HPO(4) 1 and MgSO(4).7H(2)O 0.5. The fungus was cultivated under various agitation and aeration conditions in a 5L stirred-tank bioreactor. The maximum cell mass and EPS production were obtained at a relatively high agitation speed of 200 rpm and at an aeration rate of 2 vvm. The flow behavior of the fermentation broth was Newtonian and the maximum apparent viscosity (35 cP) was observed at a highly aerated condition (2 vvm). The EPS productivity in an airlift reactor was higher than that in the stirred-tank reactor. The morphological study revealed that the fungus grows in mainly three different yeast-like forms: ovoid, elongated, and double yeast forms. The high population of the elongated yeast has a very close relationship to high EPS production. The EPS were protein-bound polysaccharides consisted of mainly mannose, xylose, and fucose. The molecular weights of EPS were determined to be (1.3-1.5)x10(6).  相似文献   

12.
The effect of dissolved oxygen concentrations on the behavior of Serratia marcescens and on yields of asparaginase and prodigiosin produced in shaken cultures and in a 55-liter stainless-steel fermentor was studied. A range of oxygen transfer rates was obtained in 500-ml Erlenmeyer flasks by using internal, stainless-steel baffles and by varying the volume of medium per flask, and in the fermentor by high speed agitation (375 rev/min) or low rates of aeration (1.5 volumes of air per volume of broth per min), or both. Dissolved oxygen levels in the fermentation medium were measured with a membrane-type electrode. Peak yields of asparaginase were obtained in unbaffled flasks (3.0 to 3.8 IU/ml) and in the fermentor (2.7 IU/ml) when the level of dissolved oxygen in the culture medium reached zero. A low rate of oxygen transfer was accomplished by limited aeration. Production of prodigiosin required a supply of dissolved oxygen that was obtainable in baffled flasks with a high rate of oxygen transfer and in the fermentor with a combination of high-speed agitation and low-rate aeration. The fermentation proceeded at a more rapid rate and changes in pH and cell populations were accelerated by maintaining high levels of dissolved oxygen in the growth medium.  相似文献   

13.
The effect of the aeration conditions on the content of volatile acids in the fermentation broth was studied. It was shown that deterioration of the aeration conditions during the process of biosynthesis in both flasks and 750 1 fermentors resulted in decreased levels of the antibiotic accumulation and was accompanied by a simultaneous increase in the concentration of the volatile acids in the culture fluid. Under unfavourable aeration conditions the volatile acids present in the fermentation broth in higher concentrations than under the optimal conditions had no effect. It was shown that the volatile acid concentration may be used as a parameter for the control of the aeration conditions and as an index of normal biosynthetic process.  相似文献   

14.
Growth and polymer synthesis were studied in a recombinant E. coli strain carrying phaBAC and phaP of Azotobacter sp. strain FA8 using different carbon sources and oxygen availability conditions. The results obtained with glucose or glycerol were completely different, demonstrating that the metabolic routes leading to the synthesis of the polymer when using glycerol do not respond to environmental conditions such as oxygen availability in the same way as they do when other substrates, such as glucose, are used. When cells were grown in a bioreactor using glucose the amount of polymer accumulated at low aeration was reduced by half when compared to high aeration, while glycerol cultures produced at low aeration almost twice the amount of polymer synthesized at the higher aeration condition. The synthesis of other metabolic products, such as ethanol, lactate, formate and acetate, were also affected by both the carbon source used and aeration conditions. In glucose cultures, lactate and formate production increased in low agitation compared to high agitation, while poly(3-hydroxybutyrate) synthesis decreased. In glycerol cultures, the amount of acids produced also increased when agitation was lowered, but carbon flow was mostly redirected towards ethanol and poly(3-hydroxybutyrate). These results indicated that carbon partitioning differed depending on both carbon source and oxygen availability, and that aeration conditions had different effects on the synthesis of the polymer and other metabolic products when glucose or glycerol were used.  相似文献   

15.
Fungal fermentation is very complex in nature due to its nonlinear relationship with the time, especially in batch culture. Growth and production of carbonyl reductase by Geotrichum candidum NCIM 980 have been studied in a laboratory scale stirred tank bioreactor at different pH (uncontrolled and controlled), agitation, aeration and dissolved oxygen concentration. The yield of the process has been calculated in terms of glucose consumed. Initial studies showed that fermenter grown cells have more than 15 times higher activity than that of the shake flask grown cells. The medium pH was found to have unspecific but significant influence on the enzyme productivity. However, at controlled pH 5.5 the specific enzyme activity was highest (306U/mg). Higher agitation had detrimental effect on the cell mass production. Dissolved oxygen concentration was maintained by automatic control of the agitation speed at an aeration rate of 0.6 volume per volume per minute (vvm). Optimization of glucose concentration yielded 21g/l cell mass with and 9.77x10(3)U carbonyl reductase activity/g glucose. Adaptation of different strategies for glucose feeding in the fermenter broth was helpful in increasing the process yield. Feeding of glucose at a continuous rate after 3h of cultivation yielded 0.97g cell mass/g glucose corresponding to 29.1g/l cell mass. Volumetric oxygen transfer coefficient (K(L)a) increased with the increasing of agitation rate.  相似文献   

16.
The influence of Paecilomyces japonica pellet morphology on fermentation broth rheology and exobiopolymer production was investigated in a 5-1 jar fermenter. Rapid formation of pellets was observed after the first day of fermentation; and these slowly increased in size and roughness. This, together with the increase in biomass concentration, altered the transport characteristics and broth rheology towards a pseudoplastic nature which, in turn, influenced cell growth and exo-biopolymer production. At mild agitation, high aeration and optimum substrate concentration, pellets were the most predominant morphological form, compared with free mycelia. The broth rheology showed pseudoplastic behavior; and the fungal morphology was closely related to the rheological properties.  相似文献   

17.
The results of the study on relation between tetracycline biosynthesis and the specific power input for agitation in pilot plant apparatus was studied. No correlation was observed between the levels of tetracycline biosynthesis and changes in the specific power input within a range of 0.6 to 2.3 kW/m3 at the expense of changes in the mixer diameter and the agitation rate, when the aeration rate was constant. It was shown that the aeration conditions were most significant for tetracycline biosynthesis. The study provided determination of the optimal aeration conditions for biosynthesis of tetracycline.  相似文献   

18.
The influence of carbon source and aeration rate on fermentation broth rheology, mycelial morphology and red pigment production of Paecilomyces sinclairii was investigated in a 5-l stirred-tank bioreactor. The characteristics of P. sinclairii grown on starch and on sucrose medium were comparatively studied: the specific growth rate in sucrose medium (0.04 h(-1)) was higher than that in starch medium, whereas the specific production rate of red pigments (0.04 gg(-1)d(-1)) was favorable in starch medium. P. sinclairii grown in sucrose medium were highly branched and showed longer hyphal lengths than that in starch medium. The consistency index (K) in sucrose medium was markedly higher than that in starch medium due to higher cell mass, while the higher values of flow behavior index (n) were indicated at the late stationary phase in starch medium. The aeration rate was varied within the ranges from 0.5 to 3.5 vvm while running the fermentation at mild agitation of 150 rpm using sucrose as the carbon source. The maximum biomass concentration of P. sinclairii was about 33 gl(-1) with an aeration rate of 1.5 vvm, whereas the maximum yield of red pigment production (4.73 gl(-1)) was achieved with 3.5 vvm. The highly branched cell morphology appeared at 1.5 vvm and the highly vacuolated cell morphology was observed in a high aeration rate (3.5 vvm). There was no significant variance in rheological parameters (K and n) between culture broths from different aeration conditions.  相似文献   

19.
This study concerns the potential use of Pseudomonas aeruginosa expressing the Vitreoscilla hemoglobin gene for the degradation of important harmful aromatic compounds such as benzene, toluene, and xylene (BTX). The use of these compounds by both strains was determined as the production of cell mass (viable cell number) in a minimal medium containing any one of the BTX compounds as the sole carbon and energy source. Furthermore, the BTX degradation capability of both strains was monitored by measuring the production of 3‐methylcatechol, a common intermediate. For the cells of the logarithmic phase, which were grown at high aeration/high agitation or low aeration/low agitation, the engineered strain showed a better growth rate than the host strain. With the benzene in the medium, the recombinant strain exhibited a higher (up to 4‐fold) cell density than the parental wild‐type strain at this phase. In contrast, regarding the cells of the late stationary phase under high aeration/high agitation conditions, the host strain had generally higher viable cell numbers than the recombinant strain. At this phase this difference was, however, less significant under the conditions of low aeration/low agitation. Similarly, in toluene containing medium (at high aeration/high agitation) the recombinant strain showed a higher cell density which was from a 15‐fold to almost one order of magnitude greater than its parental strain during the logarithmic phase where the cell density of P. aeruginosa remained nearly constant. Contrary to the results with benzene and toluene, both strains exhibited similar growth characteristics when they were grown in the presence of xylene. The positive effect of the oxygen uptake by the recombinant system on the BTX metabolizing activity was also apparent in a high accumulation of 3‐methylcatechol in the cultures of the recombinant strain. At certain points of incubation, the hemoglobin expressing strain showed a significantly (p < 0.05) higher 3‐methylcatechol accumulation than the host strain. These results demonstrated the possible potential of the Vitreoscilla hemoglobin as an efficient oxygen uptake system for the bioremediation of some compounds of environmental concern.  相似文献   

20.
The effects of agitation rates from 400 to 900 rpm and aeration rates ranging from 0.18 to 0.6 vvm on biomass and citric acid production on glycerol media by acetate-negative mutants of Yarrowia lipolytica, Wratislavia 1.31 and Wratislavia AWG7, in batch culture were studied. The agitation rates of 800 and 900 rpm (at a constant aeration rate of 0.36 vvm) and aeration rates within the range of 0.24-0.48 vvm (at a constant agitation rate of 800 rpm), which generated dissolved oxygen concentration (DO) higher than 40%, were found the best for citric acid biosynthesis from glycerol. An increase in agitation rate (higher than 800 rpm) and aeration rate (higher than 0.36 vvm) had no impact on DO and citric acid production. The highest citric acid concentration (92.8 g/L) and yield (0.63 g/g) were obtained with Wratislavia 1.31 strain at 0.24 vvm. The highest volumetric citric acid production rate (1.15 g/Lh) and specific citric acid production rate (0.071 g/gh) were reached at 0.48 vvm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号