首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The streptococcal resistance plasmid pIP501 (30 kilobase pairs [kb]) encodes resistance to chloramphenicol (Cmr) and erythromycin (Emr) and is capable of conjugative transfer among numerous streptococcal species. By using a streptococcal host-vector recombinant DNA system, the Cmr and Emr determinants of pIP501 were localized to 6.3-kb HindIII and 2.1-kb HindIII-AvaI fragments, respectively. pIP501 was lost at a frequency of 22% in Streptococcus sanguis cells grown at 42 degrees C but was stable in cells grown at 37 degrees C (less than 1% frequency of loss). Sequences from a cryptic multicopy plasmid, pVA380-1, were substituted for the pIP501 Emr determinant in vitro, and the resulting recombinant plasmid, designated pVA797, was recovered in transformed S. sanguis cells. The replication of pVA797 was governed by the pVA380-1 sequences based on temperature-stable replication and incompatibility with pVA380-1-derived replicons. The self-ligation of partially cleaved HindIII pIP501 DNA fragments allowed the localization of a pIP501 region involved in autonomous plasmid replication. A small pIP501 derivative (pVA798) obtained from this experiment had a greatly increased copy number but was unstably inherited. Our data indicate that the sequences encoding the resistance determinants and some of the plasmid replication machinery are relatively clustered on the pIP501 molecule. The properties of pVA797 and pVA798 indicate that these molecules will enhance current streptococcal genetic systems from the standpoint of conjugative mobilization (pVA797) and gene amplification (pVA798).  相似文献   

3.
A rapid and simple technique was developed for conjugation between group N and group D streptococci by using cells entrapped within calcium alginate gel beads. With this method, the frequencies of transfer of lactose metabolism from Streptococcus lactis ME2 to S. lactis LM2302 were comparable to those achieved with agar surface matings. Conjugal transfer of the chloramphenicol and erythromycin resistance plasmid pVA797::Tn917 from S. faecalis V1229 to S. faecalis V1102 in alginate beads occurred at frequencies comparable to those achieved with filter matings. The results demonstrated efficient conjugal transfer of plasmid DNA among alginate-immobilized streptococcal cells and suggested that this method could be used as an alternative to conventional solid-surface and filter matings with these organisms.  相似文献   

4.
A rapid and simple technique was developed for conjugation between group N and group D streptococci by using cells entrapped within calcium alginate gel beads. With this method, the frequencies of transfer of lactose metabolism from Streptococcus lactis ME2 to S. lactis LM2302 were comparable to those achieved with agar surface matings. Conjugal transfer of the chloramphenicol and erythromycin resistance plasmid pVA797::Tn917 from S. faecalis V1229 to S. faecalis V1102 in alginate beads occurred at frequencies comparable to those achieved with filter matings. The results demonstrated efficient conjugal transfer of plasmid DNA among alginate-immobilized streptococcal cells and suggested that this method could be used as an alternative to conventional solid-surface and filter matings with these organisms.  相似文献   

5.
The vectors capable of replication in Escherichia coli and Agrobacterium tumefaciens have been constructed on the basis of the plasmid pUB5502. The constructed vectors pVA12, pVA12-2, pVA12-4 contain the mini-replicon and trimethoprim resistance gene (Tp) of a broad host-range plasmid R388 (IncW). The pVA12 vector (8.8 kb) has been constructed by insertion of a kanamycin resistance gene (Km) from the plasmid pUC-4K into a Psti site. It possesses 7 unique restriction sites for XhoI, SmaI, PvuI, PvuII, HindIII, EcoRI, BamHI and the markers for kanamycin and trimethoprim resistance (Km and Tp). The pVA12-2 and pVA12-4 vectors were obtained as a result of changing of the PvuII-EcoI fragment of pVA12 carrying the Tp gene for the PvuII-EcoRI fragment of pBR322 carrying the Tc gene. These plasmids have the same size of 9.7 kb and 8 unique sites for restriction endonucleases XhoI, SmaI, PvuI, PvuII, EcoRI, EcoRV, SalI, BalI and Km and Tc genes. No difference has been registered between the two plasmids by restriction analysis, but pVA12-4 has the dramatically increased copy number in Escherichia coli cells. All three vectors are transferable to Agrobacterium tumefaciens with the same frequencies by transformation or conjugation and do not affect the oncogenicity of pTi.  相似文献   

6.
L Tao  D J LeBlanc  J J Ferretti 《Gene》1992,120(1):105-110
Seven new streptococcal integration shuttle vectors have been constructed which contain different antibiotic-resistance-encoding genes capable of expression in both Streptococcus sp. and Escherichia coli. These plasmids can replicate in E. coli, but not in streptococci because of the absence of a streptococcal origin of replication. The size, antibiotic resistance, and number of unique restriction sites available for cloning for each plasmid are as follows: pSF141 (7.6 kb, CmR and KmR, 7 sites), pSF143 (5.7 kb, TcR, 6 sites), pSF148 (7.3 kb, CmR and SpR, 7 sites), pDL285 (3.4 kb, KmR, 3 sites), pDL286 (3.1 kb, SpR, 4 sites), pSF151 (3.5 kb, KmR, 10 sites), pSF152 (3.2 kb, SpR, 9 sites). If these plasmids carry a fragment of streptococcal DNA they can specifically integrate into the chromosome via Campbell-like, homologous recombination. Therefore, they should be useful for gene inactivation, cloning, chromosomal walking, or linkage analysis in streptococci. The availability of these integration plasmids resistant to different antibiotics, along with the previously described plasmid, pVA891 (ErR), should also allow the construction of mutants possessing multiple insertionally inactivated genes useful for a variety of genetic studies.  相似文献   

7.
M Novel  D C Huang  G Novel 《Biochimie》1988,70(4):543-551
The lactose plasmid pUCL22 of the single plasmid strain Streptococcus lactis ssp. lactis Z270 was demonstrated to fuse with the heterologous conjugative plasmid pVA797. The fusion of pUCL22 with pVA797 occurred by recombination between a specific sequence of pUCL22 and different sites of pVA797. The cointegrates of pUCL22::pVA797 were unstable: in the absence of lactose selection, they segregated plasmids that corresponded to pVA797 enlarged by one sequence of 1.2 kb, common to all derivative plasmids. This resolution sequence (RS) was shown to originate in the 9.7 kb BstEII restriction fragment of pUCL22 and to duplicate during replicon fusion. In addition, after nuclease S1 treatment of pUCL22 DNA, a self-annealing sequence was isolated; the two copies of this inverted repeat (IR) sequence were located on the 18 kb BamHI segment of the plasmid. This latter sequence was distinct from the RS with which it hybridized weakly. The RS was responsible for the transposition of the entire lactose plasmid; the role of the IR remains to be elucidated.  相似文献   

8.
A shuttle vector that can replicate in both Streptococcus spp. and Escherichia coli has been constructed by joining the E. coli plasmid pACYC184 (chloramphenicol and tetracycline resistance) to the streptococcal plasmid pGB305 (erythromycin resistance). The resulting chimeric plasmid is designated pSA3 (chloramphenicol, erythromycin, and tetracycline resistance) and has seven unique restriction sites: EcoRI, EcoRV, BamHI, SalI, XbaI, NruI, and SphI. Molecular cloning into the EcoRI or EcoRV site results in inactivation of chloramphenicol resistance, and cloning into the BamHI, SalI, or SphI site results in inactivation of tetracycline resistance in E. coli. pSA3 was transformed and was stable in Streptococcus sanguis and Streptococcus mutans in the presence of erythromycin. We have used pSA3 to construct a library of the S. mutans GS5 genome in E. coli, and expression of surface antigens in this heterologous host has been confirmed with S. mutans antiserum. A previously cloned determinant that specifies streptokinase was subcloned into pSA3, and this recombinant plasmid was stable in the presence of a selective pressure and expressed streptokinase activity in E. coli, S. sanguis (Challis), and S. mutans.  相似文献   

9.
In the accompanying communication we showed that a 2 kb EcoRI-BamHI restriction fragment from the pfkA-rha interval of the Escherichia coli K-12 chromosome fully complemented a chromosomal cpxA mutation when the fragment was cloned in pBR325. The same fragment cloned in pBR322 lacked any complementing activity. We show here that minicells containing the pBR325 derivative (pRA310) synthesized a 33 kDa polypeptide, designated phi 33, that was not synthesized in minicells containing the pBR322 derivative (pRA311) or either of the parent plasmids. Synthesis of the phi 33 polypeptide did not occur in minicells containing Tn5 insertion alleles of pRA310 that inactivated its cpxA complementing activity. These insertions mapped within the vector cat (chloramphenicol acetyltransferase gene) sequence immediately adjacent to the EcoRI site of pRA310 and within the 700-800 bp of the cloned EcoRI-BamHI fragment immediately adjacent to the EcoRI site. Tn5 insertions located within the fragment but closer to the BamHI terminus affected neither the cpxA complementing activity of pRA310 nor synthesis of the phi 33 polypeptide in minicells. Plasmid pRA311 could be converted to a plasmid with cpxA complementing activity by cloning into its EcoRI site a restriction fragment containing a hybrid trp-lacUV5 promoter, the lacZ ribosome binding site, and the first eight lacZ codons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The mobilization of a nonconjugative plasmid (pCaT) that mediates chloramphenicol resistance in Lactobacillus plantarum caTC2R was achieved by comobilization with the conjugative plasmid pAM beta 1. The conjugation studies confirmed that the 8.5-kb pCaT in L. plantarum caTC2R contains the gene responsible for chloramphenicol resistance and that the plasmid has several unique restriction sites which make it useful for genetic studies in Carnobacterium spp. Cloning studies showed that the gene responsible for chloramphenicol resistance is located in the 2.6-kb EcoRV-SalI region of pCaT. This was confirmed by probing the 3.0-kb BglII fragment of pCaT with a biotin-labeled 1.6-kb BstEII-HpaII fragment from the streptococcal-derived plasmid pVA797(Cmr). Expression of chloramphenicol resistance in Carnobacterium as well as in other Lactobacillus species was achieved by electrotransformation using donor DNA from pCaT.  相似文献   

11.
Chimeric plasmids, which were useful as cloning vehicles in a Streptococcus sanguis (Challis) host vector system, have been constructed. By using three different strategies of restriction endonuclease digestion and ligation, a deoxyribonucleic acid (DNA) fragment bearing an erythromycin resistance determinant was ligated in vitro to a phenotypially cryptic plasmid from Streptococcus ferus. Recombinant plasmids could be recovered after transformation of S. sanguis (Challis) with these preparations. Three useful chimeras were constructed. pVA680, 5.5 megadaltons in size, contained a single KpnI site into which passenger DNA may be spliced. pVA736, 5.0 megadaltons in size, contained single EcoRI, HindIII, and KpnI sites into which passenger DNA may be spliced. The EcoRI and KpnI sites of pVA736 may be used in combination with one another when ligating DNA into this plasmid. pVA738, 3.7 megadaltons in size, contained single HindIII and AvaI sites into which passenger DNA may be spliced. pVA680, pVA736, and pVA738 were stably maintained as multicopy plasmids in S. sanguis (Challis). None of them continued to replicate (amplify) in chloramphenicol-treated cells. By using pVA736 as a vector, we have cloned a chloramphenicol resistance determinant obtained from a large, conjugative streptococcal R plasmid. In addition, chromosomal DNA sequences from Streptococcus mutans have been inserted into pVA736 by using the KpnI-EcoRI site combination.  相似文献   

12.
Due to the current variability in applying polyethylene glycol-mediated protoplast transformation to lactic streptococci, a study was undertaken to assess the feasibility of conjugative mobilization as an alternative method for vector delivery. By using the broad-host-range conjugative plasmid pVA797, the partially homologous cloning vector pVA838 was successfully introduced into various strains of Streptococcus lactis, Streptococcus cremoris, Streptococcus lactis subsp. diacetylactis, Streptococcus thermophilus, and Streptococcus faecalis. Frequencies ranged from 10(-2) to 10(-6) transconjugants per recipient. Both pVA797 and pVA838 were acquired intact, without alteration in functionality. Also, the shuttle vector pSA3, which shares partial homology with pVA797, was mobilized via conjugation. The use of S. lactis LM2301 as the intermediate donor allowed the use of physiologic and metabolic characteristics for recipient differentiation. The construction of a vector containing a "DNA cassette" conferring mobilization and the resolution, segregation, and stability of the cointegrates, pVA797, pVA838, and pSA3, are also reported.  相似文献   

13.
Due to the current variability in applying polyethylene glycol-mediated protoplast transformation to lactic streptococci, a study was undertaken to assess the feasibility of conjugative mobilization as an alternative method for vector delivery. By using the broad-host-range conjugative plasmid pVA797, the partially homologous cloning vector pVA838 was successfully introduced into various strains of Streptococcus lactis, Streptococcus cremoris, Streptococcus lactis subsp. diacetylactis, Streptococcus thermophilus, and Streptococcus faecalis. Frequencies ranged from 10(-2) to 10(-6) transconjugants per recipient. Both pVA797 and pVA838 were acquired intact, without alteration in functionality. Also, the shuttle vector pSA3, which shares partial homology with pVA797, was mobilized via conjugation. The use of S. lactis LM2301 as the intermediate donor allowed the use of physiologic and metabolic characteristics for recipient differentiation. The construction of a vector containing a "DNA cassette" conferring mobilization and the resolution, segregation, and stability of the cointegrates, pVA797, pVA838, and pSA3, are also reported.  相似文献   

14.
The virulence factors of the cariogenic bacterium Streptococcus sobrinus have been difficult to assess because of a lack of tools for the genetic manipulation of this organism. The construction of an Escherichia coli-Streptococcus shuttle vector, pDL289, that can be mobilized into S. sobrinus by the conjugative plasmid pAM beta 1 was described in a previous report. The vector contains pVA380-1 for replication and mobilization in streptococci, the pSC101 replicon for maintenance in E. coli, a kanamycin resistance marker that functions in both hosts, and the multiple cloning site and lacZ from pGEM7Zf(-). pDL289 is stable with or without selection in several species of Streptococcus. In this study, a derivative with a deletion in the minus origin of the pVA380-1 component of pDL289 was constructed. This derivative, pDL289 delta 202, was less stable than pDL289 in Streptococcus gordonii Challis, Streptococcus mutans, and S. sobrinus. Both pDL289 and pDL289 delta 202 were mobilizable by pAM beta 1 into S. sobrinus, with frequencies of 3 x 10(-6) and 1 x 10(-7) transconjugants per recipient CFU, respectively. The cloned scrA gene of S. sobrinus 6715-10 coding for the EIISuc of the sucrose-specific phosphoenolpyruvate phosphotransferase system was interrupted by the insertion of a streptococcal spectinomycin resistance gene active in E. coli and streptococci. The interrupted scrA gene was subcloned into both pDL289 and pDL289 delta 202. Each recombinant plasmid was introduced into the DL1 strain of S. gordonii Challis, which was then used as a recipient for the conjugative transfer of pAM beta 1. The latter plasmid was used to mobilize each recombinant plasmid from S. gordonii Challis DL1 to S. sobrinus 6715-10RF. Subsequently, recombinants derived from a double-crossover event were isolated on the basis of resistance to spectinomycin and susceptibility to kanamycin. Recombinational events were confirmed by Southern hybridization, and the inactivation of the EII Suc in double crossovers was confirmed by phosphotransferase system assays. This is the first report of allelic replacement in S. sobrinus.  相似文献   

15.
The replication region of a 28-kilobase-pair (kbp) cryptic plasmid from Lactococcus lactis subsp. lactis biovar diacetylactis SSD207 was cloned in L. lactis subsp. lactis MG1614 by using the chloramphenicol resistance gene from the streptococcal plasmid pGB301 as a selectable marker. The resulting 8.1-kbp plasmid, designated pVS34, was characterized further with respect to host range, potential cloning sites, and location of replication gene(s). In addition to lactococci, pVS34 transformed Lactobacillus plantarum and, at a very low frequency, Staphylococcus aureus but not Escherichia coli or Bacillus subtilis. The 4.1-kbp ClaI fragment representing lactococcal DNA in pVS34 contained unique restriction sites for HindIII, EcoRI, XhoII, and HpaII, of which the last three could be used for molecular cloning. A region necessary for replication was located within a 2.5-kbp fragment flanked by the EcoRI and ClaI restriction sites. A 3.8-kbp EcoRI fragment derived from a nisin resistance plasmid, pSF01, was cloned into the EcoRI site of pVS34 to obtain a nisin-chloramphenicol double-resistance plasmid, pVS39. From this plasmid, the streptococcal chloramphenicol resistance region was subsequently eliminated. The resulting plasmid, pVS40, contains only lactococcal DNA. Potential uses for this type of a nisin resistance plasmid are discussed.  相似文献   

16.
The replication region of a 28-kilobase-pair (kbp) cryptic plasmid from Lactococcus lactis subsp. lactis biovar diacetylactis SSD207 was cloned in L. lactis subsp. lactis MG1614 by using the chloramphenicol resistance gene from the streptococcal plasmid pGB301 as a selectable marker. The resulting 8.1-kbp plasmid, designated pVS34, was characterized further with respect to host range, potential cloning sites, and location of replication gene(s). In addition to lactococci, pVS34 transformed Lactobacillus plantarum and, at a very low frequency, Staphylococcus aureus but not Escherichia coli or Bacillus subtilis. The 4.1-kbp ClaI fragment representing lactococcal DNA in pVS34 contained unique restriction sites for HindIII, EcoRI, XhoII, and HpaII, of which the last three could be used for molecular cloning. A region necessary for replication was located within a 2.5-kbp fragment flanked by the EcoRI and ClaI restriction sites. A 3.8-kbp EcoRI fragment derived from a nisin resistance plasmid, pSF01, was cloned into the EcoRI site of pVS34 to obtain a nisin-chloramphenicol double-resistance plasmid, pVS39. From this plasmid, the streptococcal chloramphenicol resistance region was subsequently eliminated. The resulting plasmid, pVS40, contains only lactococcal DNA. Potential uses for this type of a nisin resistance plasmid are discussed.  相似文献   

17.
Summary The streptococcal resistance plasmid pSM10 (8.3 kb), a deletion derivative of pSM10419 (22.9 kb) determining constitutive erythromycin and lincomycin resistance, was physically mapped with the restriction endonucleases AvaI, AvaII, EcoRI, HpaI, KpnI, PvuII (one site each), HindIII, HaeII (three sites each), HincII (four sites), and HhaI (five sites). Using the cryptic plasmid pVA318 as cloning vehicle, the largest HindIII fragment of pSM10 (3.3 kb) was shown to contain the erythromycin/lincomycin resistance gene(s) of the plasmid. The AvaII site of pSM10 proved to be suitable as a site for cloning AvaII-generated chromosomal DNA fragments from a group C streptococcal strain in the Challis strain of Streptococcus sanguis (group) H. A detailed physical map of the chimeric plasmid pSM10221 (12.8 kb), a fusion product of pSM10 and the staphylococcal chloramphenicol resistance plasmid pC221 (4.5 kb), is also presented. The plasmid chimera has properties making it potentially useful in development of a doubly selective streptococcal cloning vehicle by searching for insertional inactivation.  相似文献   

18.
Summary Streptococcal plasmid pGB301 is an in vivo rearranged plasmid with interesting properties and potential for the molecular cloning of genes in streptococci. Transformation of S. sanguis (Challis) with the group B streptococcal plasmid pIP501 (29.7 kb) gave rise to the deletion derivative pGB301 (9.8 kb, copy number 10) which retained the multiple resistance phenotype of its ancestor (inducible MLS-resistance, chloramphenicol resistance). Among the eight restriction endonucleases used to physically map pGB301 were four that cleaved the plasmid at single sites yielding either sticky (HpaII, KpnI) or bluntends (HpaI, HaeIII/BspRI). Passenger DNA derived from larger streptococcal plasmids (pSF351C61, 69.5 kb; pIP800, 71 kb) was successfully inserted into the HpaII site and, by blunt-end cloning, into the HaeIII/BspRI site. The gentamicin/kanamycin resistance gene of pIP800 was expressed by recombinant plasmids carrying the insert in either orientation. Insertion of passenger DNA into the HaeIII/BspRI site (but not the HpaII site) caused instability of adjacent pGB301 sequences which were frequently deleted, thereby removing the chloramphenicol resistance phenotype. The vector pGB301 has a remarkable capacity for passenger DNA (inserts up to 7 kb) and the property of instability and loss of a resistance phenotype following insertion of passenger DNA into the HaeIII/BspRI site should facilitate the identification of cloned segments of DNA when using this plasmid in molecular cloning experiments.  相似文献   

19.
Plasmid pMC44 is a recombinant plasmid that contains a 2-megadalton EcoRI fragment of Escherichia coli K-12 DNA joined to the cloning vehicle, pSC101. The polypeptides specified by plasmid pMC44 were identified and compared with those specified by pSC101 to determine those that are unique to pMC44. Three polypeptides specified by plasmid pMC44 were localized in the cell envelope fraction of minicells: a Sarkosyl-insoluble outer membrane polypeptide (designated M2), specified by the cloned 2-megadalton DNA fragment, and two Sarkosyl-soluble membrane polypeptides specified by the cloning plasmid pSC101. Bacteria containing plasmid pMC44 synthesized quantities of M2 approximately equal to the most abundant E. coli K-12 outer membrane protein. Evidence is presented that outer membrane polypeptide M2, specified by the recombinant plasmid pMC44, is the normal E. coli outer membrane protein designated protein a by Lugtenberg and 3b by Schnaitman.  相似文献   

20.
Molecular cloning and expression of Corynebacterium glutamicum genes complementing Escherichia coli mutations thrA2 and ilvA was performed. It was demonstrated that the thrA2 gene of C. glutamicum is located close to thrB on EcoRI DNA fragment 4.1 kb long. The fragment was cloned in pUC18 vector. The thrA2 gene is expressed in the recombinant plasmid pOBT3 under control of the vector pUC18 Plac promoter. In E. coli minicells, the genes thrA2 and thrB determined synthesis of proteins of Mr 43kD and 25 kD, respectively. A gene complementing ilvA mutation of E. coli was identified in a library of EcoRI C. glutamicum DNA fragments. This library was constructed using plasmid vector. It was shown that the ilvA gene of C. glutamicum is located inside the 3.6 kb EcoRI fragment and is expressed using its own promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号