首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
All four possible diastereoisomers of 1 alpha,25-dihydroxycholecalciferol-26,23-lactone (1 alpha,25-(OH)2D3-26,23-lactone) were chemically synthesized and were compared to 1 alpha,25-dihydroxycholecalciferol (1 alpha,25(OH)2D3) in terms of their stimulation, in vivo, of intestinal calcium transport and mobilization of calcium from bone in vitamin D-deficient rats (the two classic vitamin D-mediated responses), and their relative binding to the chick intestinal cytosol receptor for 1 alpha,25-(OH)2D3. The receptor binding affinity results are expressed as relative competitive index (RCI), where the RCI is defined as 100 for 1 alpha,25(OH)2D3. The RCI obtained for 23(S)25(S)-1 alpha,25(OH)2D3-26,23-lactone was 7.90, for 23(R)25(R)-1 alpha,25(OH)2D3-26,23-lactone was 2.27, 23(S)25(R)-1 alpha,25(OH)2D3-26,23-lactone was 0.17, for 23(R)25(S)-1 alpha,25(OH)2D3-26,23-lactone 0.22 and for the in vivo produced 1 alpha,25(OH)2D3-26,23-lactone the RCI was only 0.17. Also the four diastereoisomers of 1 alpha,25(OH)2D3-26,23-lactone all stimulated intestinal calcium transport, reaching a maximum 8 h after administration. Compared with the stimulation of intestinal calcium transport by 1 alpha,25(OH)2D3, 23(S)25(S)-1 alpha,25(OH)2D3-26,23-lactone was 1/4 as effective, 23(R)25(R)-1 alpha,25(OH)2D3-26,23-lactone was 1/20 as effective, 23(S)25(R)-1 alpha,25(OH)2D3-26,23-lactone was 1/74 as effective and 23(R)25(S)-1 alpha,25(OH)2D3-26,23-lactone was 1/53 as effective. Similarly, 23(S)25(S)-1 alpha,25(OH)2D3-26,23-lactone and 23(R)25(R)-1 alpha,25(OH)2D3-26,23-lactone were estimated to be 3 and 20 times less active than 1 alpha,25-(OH)2D3 in elevation of serum calcium. However, 23(S)25(R)-1 alpha,25(OH)2D3-26,23-lactone and 23(R)25(S)-1 alpha,25(OH)2D3-26,23-lactone decreased the serum calcium levels 24 h after administration. 23(S)25(R)-1 alpha,25(OH)2D3-26,23-lactone reduced serum calcium concentrations to a greater extent than 23(R)25(S)-1 alpha,25(OH)2D3-26,23-lactone. These results indicate that the biological activities of the diastereoisomers of 1 alpha,25(OH)2D3-26,23-lactone were quite different among four stereochemical configurations.  相似文献   

2.
The present study was carried out in order to elucidate the metabolic pathway from 1 alpha,25-(OH)2D3 to 1 alpha,25-(OH)2D3-26,23-lactone. For that purpose, we stereospecifically synthesized the vitamin D3 derivatives 1 alpha,23(S),25-(OH)3D3, 1 alpha,23(S),25(R),26-tetrahydroxyvitamin D3, and 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-lactol. The in vitro metabolism of these compounds was examined in kidney homogenates and intestinal mucosa homogenates from 1 alpha,25-(OH)2D3-supplemented chicks. The naturally occurring 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone was produced (in increasing amounts) from 1 alpha,25-(OH)2D3, 1 alpha,25(R),26-(OH)3D3, 1 alpha,23(S),25-(OH),D3, 1 alpha,23(S),25(R),26-(OH)4D3, and 23(S),25(R)-1 alpha,25-(OH)2D3-26,23-lactol. These results indicated that there are two possible metabolic pathways from 1 alpha,25-(OH)2D3 to 1 alpha,23(S),25(R),26-(OH)4D3: the major one is by way of 1 alpha,23(S),25-(OH)3D3 and the minor one is by way of 1 alpha,25(R),26-(OH)3D3. 1 alpha,23(S),25(R),26-Tetrahydroxyvitamin D3 is further metabolized to 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone via 23(S),25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactol. In the course of our studies, a new biosynthetic vitamin D3 metabolite was isolated in pure form. This metabolite was identified as 23(S),25(R)-1 alpha,25-(OH)2D3-26,23-lactol by UV spectrophotometry and mass spectrometry. Furthermore, we establish in this report that the lactonization of 1 alpha,23,25,26-(OH)4D3 and 1 alpha,25-(OH)2D3-26,23-lactol occurs in a stereo-retained and stereo-selective fashion.  相似文献   

3.
Four possible diastereoisomers of 1 alpha,25-dihydroxyvitamin D3-26,23-lactone were chemically synthesized and compared with the natural metabolite by high-pressure liquid chromatography. The four synthetic diastereoisomers of 1 alpha,25-dihydroxyvitamin D3-26,23-lactone could be separated into three peaks by high-pressure liquid chromatography. The naturally occurring 1 alpha,25-dihydroxyvitamin D3-26,23-lactone isolated from dog serum and in vitro incubation of chick kidney homogenates comigrated with 23(S)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone. The four diastereoisomers of 1 alpha,25-dihydroxyvitamin D3-26,23-lactone were tested against naturally occurring 1 alpha,25-dihydroxyvitamin D3-26,23-lactone to determine their relative competition in the 1 alpha,25-dihydroxyvitamin D3-specific cytosol receptor binding assay for 1 alpha,25-dihydroxyvitamin D3. 23(S)25(S)-1 alpha,25-Dihydroxyvitamin D3-26,23-lactone was the best competitor followed by 23(R)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone and 23(R)25(S)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone, and 23(S)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone was the poorest competitor. Natural 1 alpha,25-dihydroxyvitamin D3-26,23-lactone isolated from dog serum had almost the same binding affinity as that of 23(S)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone. These data unequivocally demonstrate that the stereochemistry of the natural 1 alpha,25-dihydroxyvitamin D3-26,23-lactone has the 23(S) and 25(R) configuration.  相似文献   

4.
We examined the effects of two novel 1alpha,25-dihydroxyvitamin D(3)-26,23-lactone (1alpha,25-(OH)(2)D(3)-26,23-lactone) analogs on 1alpha,25(OH)(2)D(3)-induced differentiation of human leukemia HL-60 cells thought to be mediated by the genomic action of 1alpha, 25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)) and of acute promyelocytic leukemia NB4 cells thought to be mediated by non-genomic actions of 1alpha,25-(OH)(2)D(3). We found that the 1alpha,25-(OH)(2)D(3)-26,23-lactone analogs, (23S)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647) and (23R)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9648), inhibited differentiation of HL-60 cells induced by 1alpha,25-(OH)(2)D(3). However, 1beta-hydroxyl diastereomers of these analogs, i.e. (23S)-25-dehydro-1beta-hydroxyvitamin D(3)-26, 23-lactone (1beta-TEI-9647) and (23R)-25-dehydro-1beta-hydroxyvitamin D(3)-26,23-lactone (1beta-TEI-9648), did not inhibit differentiation of HL-60 cells caused by 1alpha,25-(OH)(2)D(3). A separate study showed that the nuclear vitamin D receptor (VDR) binding affinities of the 1-hydroxyl diastereomers were about 200 and 90 times weaker than that of 1alpha-hydroxyl diastereomers, respectively. Moreover, none of these lactone analogs inhibited NB4 cell differentiation induced by 1alpha,25-(OH)(2)D(3). In contrast, 1beta,25-dihydroxyvitamin D(3) (1beta,25-(OH)(2)D(3)) and 1beta,24R-dihydroxyvitamin D(3) (1beta,24R-(OH)(2)D(3)) inhibited NB4 cell differentiation but not HL-60 cell differentiation. Collectively, the results suggested that 1-hydroxyl lactone analogs, i.e. TEI-9647 and TEI-9648, are antagonists of 1alpha,25-(OH)(2)D(3), specifically for the nuclear VDR-mediated genomic actions, but not for non-genomic actions.  相似文献   

5.
We examined the effects of two novel 1alpha,25-dihydroxyvitamin D3-26,23-lactone (1alpha,25-lactone) analogues on human promyelocytic leukemia cell (HL-60) differentiation using the evaluation system of the vitamin D nuclear receptor (VDR)/vitamin D-responsive element (DRE)-mediated genomic action stimulated by 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) and its analogues. We found that the 1alpha,25-lactone analogues (23S)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9647), and (23R)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9648) bound much more strongly to the VDR than the natural (23S, 25R)-1alpha,25(OH)2D3-26,23-lactone, but did not induce cell differentiation even at high concentrations (10(-6) M). Intriguingly, the differentiation of HL-60 cells induced by 1alpha,25(OH)2D3 was inhibited by either TEI-9647 or TEI-9648 but not by the natural lactone. In contrast, retinoic acid or 12-O-tetradecanoylphorbol-13-acetate-induced HL-60 cell differentiation was not blocked by TEI-9647 or TEI-9648. In separate studies, TEI-9647 (10(-7) M) was found to be an effective antagonist of both 1alpha,25(OH)2D3 (10(-8) M) mediated induction of p21(WAF1, CIP1) in HL-60 cells and activation of the luciferase reporter assay in COS-7 cells transfected with cDNA containing the DRE of the rat 25(OH)D3-24-hydroxylase gene and cDNA of the human VDR. Collectively the results strongly suggest that our novel 1alpha,25-lactone analogues, TEI-9647 and TEI-9648, are specific antagonists of 1alpha, 25(OH)2D3 action, specifically VDR/DRE-mediated genomic action. As such, they represent the first examples of antagonists, which act on the nuclear VDR.  相似文献   

6.
The binding of the natural and unnatural diastereoisomers 25-hydroxyvitamin D3-26,23-lactone and 1,25 dihydroxyvitamin D3-26,23-lactone to the vitamin D-binding protein (DBP) and 1,25 dihydroxyvitamin D3 [1,25(OH)2D3] chick intestinal receptor have been investigated. Also, the biological activities, under in vivo conditions, of these compounds, in terms of intestinal calcium absorption (ICA) and bone calcium mobilization (BCM), in the chick are reported. The presence of the lactone ring in the C23-C26 position of the seco-steroid side chain increased two to three times the ability of both 25(OH)D3 and 1,25(OH)2D3 to displace 25(OH)[3H]D3 from the D-binding protein; however, the DBP could not distinguish between the various diastereoisomers. In contrast, the unnatural form (23R,25S) of the 25-hydroxy-lactone was found to be 10-fold more potent than the natural form, and the unnatural (23R,25S)1,25(OH)2D3-26,23-lactone three times more potent than the natural 1,25-dihydroxy-lactone in displacing 1,25(OH)2[3H]D3 from its intestinal receptor. While studying the biological activity of these lactone compounds, it was found that the natural form of the 25-hydroxy-lactone increased the intestinal calcium absorption 48 h after injection (16.25 nmol), while bone calcium mobilization was decreased by the same dose of the 25-hydroxy-lactone. The 1,25-dihydroxyvitamin D3-26,23-lactone in both its natural and unnatural forms was found to be active in stimulating ICA and BCM. These results suggest that the 25-hydroxy-lactone has some biological activity in the chick and that 1,25(OH)2D3-26,23-lactone can mediate ICA and BCM biological responses, probably through an interaction with 1,25-(OH)2D3 specific receptors in these target tissues.  相似文献   

7.
1 alpha,25-Dihydroxyvitamin D3-26,23-lactone [1 alpha,25(OH)2D3-26,23-lactone] was compared to 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3] in terms of their stimulation, in vivo, of intestinal calcium transport and mobilization of calcium from bone in the rat (the two classic vitamin D-mediated responses), and their relative binding to the chick intestinal receptor for 1 alpha,25(OH)2D3, 1 alpha,25-(OH)2D3-26,23-lactone was found to be only one-thirtieth as active as 1 alpha,25-(OH)2D3 in the stimulation of intestinal calcium transport and was found to mediate a significant reduction in the steady-state serum calcium levels. Associated with the reduction in serum calcium was a significant increase in urinary calcium excretion for 24 h after the administration of the steroid. Prior administration of 1 alpha,25(OH)2D3-26,23-lactone partially blocked the actions of a subsequently administered dose of 1 alpha,25(OH)2D3 in increasing serum calcium levels, but did not affect the action of 1 alpha,25(OH)2D3 in stimulating intestinal calcium transport. The binding affinity of 1 alpha,25(OH)2D3-26,23-lactone to the chick intestinal cytosol receptor protein was observed to be 670 times lower than that of 1,25-(OH)2D3 which indicates that perturbation of the 25-hydroxylated side chain by formation of the 26,23-lactone causes a significant reduction in ligand affinity for the receptor.  相似文献   

8.
9.
We have demonstrated that 1alpha,25-dihydroxyvitamin D(3)-26, 23-lactone analogs, (23S)- and (23R)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647, TEI-9648, respectively), inhibit HL-60 cell differentiation induced by 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], but not differentiation caused by all-trans retinoic acid (D. Miura et al., 1999, J. Biol. Chem. 274, 16392). To assess whether the antagonistic actions of TEI-9647 and TEI-9648 in HL-60 cells are related to 1alpha,25(OH)(2)D(3) breakdown, we investigated their effects on catabolism of 1alpha,25(OH)(2)D(3). In HL-60 cells, the C-24 but not the C-23 side-chain oxidation pathway of 1alpha,25(OH)(2)D(3) has been reported. Here we demonstrate that 1alpha,25(OH)(2)D(3) was metabolized both to 24,25,26,27-tetranor-1alpha,23-(OH)(2)D(3) and 1alpha,25(OH)(2)D(3)-26,23-lactone; thus HL-60 cells constitutively possess both the 24- and the 23-hydroxylases. Metabolism of 1alpha, 25(OH)(2)D(3) was strongly suppressed by 10(-7) M TEI-9647 or 10(-6) M TEI-9648. 1alpha,25(OH)(2)D(3) alone slightly induced 24-hydroxylase gene expression by 8 h with full enhancement by 24-48 h; this induction was inhibited by 10(-6) M TEI-9647 and 10(-6) M TEI-9648 (86.2 and 31.9%, respectively) 24 h after treatment. However, analogs of TEI-9647 and TEI-9648 without the 25-dehydro functionality induced 24-hydroxylase gene expression. These results indicate that TEI-9647 and TEI-9648 clearly mediate their stereoselective antagonistic actions independent of their actions to block the catabolism of 1alpha,25(OH)(2)D(3). Therefore, TEI-9647 and TEI-9648 appear to be the first antagonists specific for the nuclear 1alpha,25(OH)(2)D(3) receptor-mediated genomic actions of 1alpha,25(OH)(2)D(3) in HL-60 cells.  相似文献   

10.
Ishizuka S  Miura D  Ozono K  Saito M  Eguchi H  Chokki M  Norman AW 《Steroids》2001,66(3-5):227-237
We synthesized various analogues of 1alpha,25-(OH)(2)D(3)-26,23-lactone and examined the effects of them on HL-60 cell differentiation using the evaluation system of the genomic action of 1alpha,25-(OH)(2)D(3). We found that (23S)- and (23R)-25-dehydro-1alpha-OH-D(3)-26,23-lactone (TEI-9647 and TEI-9648) strongly bound to the VDR, but did not induce HL-60 cell differentiation. Intriguingly, TEI-9647 and TEI-9648 did inhibit that induced by 1alpha,25-(OH)(2)D(3), whereas they did not suppress that caused by retinoic acid or TPA. On the contrary, the similar 25-dehydrated 24-dehydro analogues, TEI-D1807 and TEI-D1808, weakly but significantly induced HL-60 cell differentiation, never showing inhibitory effect on HL-60 cell differentiation induced by 1alpha,25-(OH)(2)D(3). In other experiments, TEI-9647 and TEI-9648 markedly suppressed 25-OH-D(3)-24-hydroxylase gene expression induced by 1alpha,25-(OH)(2)D(3) in HL-60 cells. TEI-9647 also inhibited the heterodimer formation between VDR and RXRalpha, and the VDR interaction with co-activator SRC-1 according to the results obtained from the mammalian two-hybrid system in Saos-2 cells. Taking all these results into consideration, we reached a manifest conclusion that TEI-9647 and TEI-9648 are the specific and first antagonists of 1alpha,25-(OH)(2)D(3) action, specifically VDR-VDRE mediated genomic action.  相似文献   

11.
The metabolic pathway from 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25-(OH)2D3] to 1 alpha,25-dihydroxyvitamin D3-26,23-lactone includes the formation of 1 alpha,23,25-26-tetrahydroxyvitamin D3 [1 alpha,23,25,26-(OH)4D3]. The aim of the current study was to explore the as yet unknown biological properties of this vitamin D3 sterol. The four diastereoisomers of 1 alpha,23,25,26-(OH)4D3 were chemically synthesized. They were compared to 1 alpha,25-(OH)2D3 in terms of their affinity for the chick intestinal 1 alpha,25-(OH)2D3 receptor and their biologic activity in vivo (stimulation of intestinal calcium absorption and mobilization of calcium from bone in vitamin D-deficient rats). The 1,25-(OH)2D3 receptor binding affinities of 1 alpha,23(R)25(R)26-(OH)4D3, 1 alpha,23(S)25(S)26-(OH)4 D3, 1 alpha,23(S)25(R)26-(OH)4D3, and 1 alpha,23(R)25(S)26-(OH)4D3 were 11, 100, 216, and 443 times weaker than the binding affinity of 1 alpha,25-(OH)2D3, respectively. Compared to 1 alpha,25-(OH)2D3, the relative capacities of the 1 alpha,23,25,26-(OH)4D3 compounds to stimulate intestinal calcium absorption were 1/4 for 1 alpha,23(R)25(R)26-(OH)4D3; 1/19 for 1 alpha,23(S)25(S)26-(OH)4D3; 1/90 for 1 alpha,23(S)25(R)26-(OH)4D3; and 1/136 for 1 alpha,23(R)25(S)26-(OH)4D3. Maximal stimulation of intestinal calcium transport occurred 8 h after administration of vitamin D3 metabolites. Mobilization of calcium from bone was quantitated by serum calcium concentration measurements. The activities of 1 alpha,23(R)25(R)26-(OH)4D3, 1 alpha,23(S)25(S)26-(OH)4D3, 1 alpha,23(S)25(R)26-(OH)4D3, and 1 alpha,23(R)25(S)26-(OH)4D3 to increase serum calcium were estimated to be 4, 13, 43, and 69 times weaker than that of 1 alpha,25-(OH)2D3, respectively. These results illustrate the stereospecificity of the chicken intestine 1 alpha,25-(OH)2D3 receptor for binding of 1 alpha,23,25,26-(OH)4D3 and suggest that the 1 alpha,23,25,26-(OH)4D3 exerts its biological activity in the rat through an interaction with 1,25-(OH)2D3 receptors. In summary, the 1 alpha,23,25,26-(OH)4D3 had a markedly lower biological activity than 1 alpha,25-(OH)2D3.  相似文献   

12.
Vitamin D compounds added to the culture medium induce differentiation of human myeloid leukemia cells (HL-60 cells) by binding to a specific cytosol receptor protein. This system provides a biologically relevant and technically simple assay to examine the relationship between molecular structure and biological activity of vitamin D compounds. Using this culture system, the biological activity of 24,24-F2-1 alpha,25(OH)2D3 and 1 alpha,25(OH)2D3-26,23-lactone was assayed. 24,24-F2-1 alpha,25(OH)2D3 was four to seven times more potent than 1 alpha,25(OH)2D3 in inducing phagocytosis and C3 rosette formation of HL-60 cells, though both compounds bound equally well to the cytosol receptor, suggesting that the defuorination at the 24-carbon position may stimulate membrane permeability of the compound. 1 alpha,25(OH)2D3-26,23-lactone, on the other hand, was only 1/200th as active as 1 alpha,25(OH)2D3. The binding affinity of the lactone for the cytosol receptor was identical with that of 1 alpha (OH)D3, suggesting that the lactone formation between the 26 and 23 positions masks the function of the 25-hydroxyl group. The binding affinity of vitamin D3 derivatives to the specific cytosol receptor of HL-60 cells was well correlated with that of intestinal cytosol protein specifically bound to 1 alpha,25(OH)2D3.  相似文献   

13.
14.
We reported that (23S)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647) antagonizes vitamin D receptor (VDR)-mediated genomic actions of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] in human cells but is agonistic in rodent cells. Human and rat VDR ligand-binding domains are similar, but differences in the C-terminal region are important for ligand binding and transactivation and might determine the agonistic/antagonistic effects of TEI-9647. We tested TEI-9647 on 1alpha,25(OH)(2)D(3) transactivation using SaOS-2 cells (human osteosarcoma) or ROS 24/1 cells (rat osteosarcoma) cotransfected with human or rodent VDR and a reporter. In both cell lines, TEI-9647 was antagonistic with wild-type human (h)VDR, but agonistic with overexpressed wild-type rat (r)VDR. VDR chimeras substituting the hVDR C-terminal region (activation function 2 domain) with corresponding rVDR residues diminished antagonism and increased agonism of TEI-9647. However, substitution of 25 C-terminal rVDR residues with corresponding hVDR residues diminished agonism and increased antagonism of TEI-9647. hVDR mutants (C403S, C410N) demonstrated that Cys403 and/or 410 was necessary for TEI-9647 antagonism of 1alpha,25(OH)(2)D(3) transactivation. These results suggest that species specificity of VDR, especially in the C-terminal region, determines the agonistic/antagonistic effects of TEI-9647 that determine, in part, VDR interactions with coactivators and emphasize the critical interaction between TEI-9647 and the two C-terminal hVDR Cys residues to mediate the antagonistic effect of TEI-9647.  相似文献   

15.
Three new in vivo metabolites of 1 alpha,25-dihydroxyvitamin D3 were isolated from the serum of dogs given large doses (two doses of 1.5 mg/dog) of 1 alpha,25-dihydroxyvitamin D3. The metabolites were isolated and purified by methanol-chloroform extraction and a series of chromatographic procedures. By cochromatography on a high-performance liquid chromatograph, ultraviolet absorption spectrophotometry, mass spectrometry, Fourier-transform infrared spectrophotometry, and specific chemical reactions, the metabolites were identified as 1 alpha,25-dihydroxy-24- oxovitamin D3, 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, and 1 alpha,24(S),25-trihydroxyvitamin D3. According to these procedures, the total amounts of the isolated metabolites were as follows: 1 alpha,25-dihydroxyvitamin D3, 23.6 micrograms; 1 alpha,25-dihydroxy-24- oxovitamin D3, 1.8 micrograms; 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, 9.2 micrograms; 1 alpha,24(R),25-trihydroxyvitamin D3, 15.4 micrograms; 1 alpha,24(S),25-trihydroxyvitamin D3, 1.0 microgram. With recovery corrections, the serum levels of each metabolite were approximately 49 ng/mL for 1 alpha,25-dihydroxyvitamin D3, 3.7 ng/mL for 1 alpha,25-dihydroxy-24- oxovitamin D3, 19 ng/mL for 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, 32 ng/mL for 1 alpha,24(R),25-trihydroxyvitamin D3, and 2.1 ng/mL for 1 alpha,24(S),25-trihydroxyvitamin D3.  相似文献   

16.
Human 25-hydroxyvitamin D3 (25(OH)D3) 24-hydroxylase (CYP24) cDNA was expressed in Escherichia coli, and its enzymatic and spectral properties were revealed. The reconstituted system containing the membrane fraction prepared from recombinant E. coli cells, adrenodoxin and adrenodoxin reductase was examined for the metabolism of 25(OH)D3, 1alpha,25(OH)2D3 and their related compounds. Human CYP24 demonstrated a remarkable metabolism consisting of both C-23 and C-24 hydroxylation pathways towards both 25(OH)D3 and 1alpha,25(OH)2D3, whereas rat CYP24 showed almost no C-23 hydroxylation pathway [Sakaki, T. Sawada, N. Nonaka, Y. Ohyama, Y. & Inouye, K. (1999) Eur. J. Biochem. 262, 43-48]. HPLC analysis and mass spectrometric analysis revealed that human CYP24 catalyzed all the steps of the C-23 hydroxylation pathway from 25(OH)D3 via 23S, 25(OH)2D3, 23S,25,26(OH)3D3 and 25(OH)D3-26,23-lactol to 25(OH)D3-26, 23-lactone in addition to the C-24 hydroxylation pathway from 25(OH)D3 via 24R,25(OH)2D3, 24-oxo-25(OH)D3, 24-oxo-23S,25(OH)2D3 to 24,25,26,27-tetranor-23(OH)D3. On 1alpha,25(OH)2D3 metabolism, similar results were observed. These results strongly suggest that the single enzyme human CYP24 is greatly responsible for the metabolism of both 25(OH)D3 and 1alpha,25(OH)2D3. We also succeeded in the coexpression of CYP24, adrenodoxin and NADPH-adrenodoxin reductase in E. coli. Addition of 25(OH)D3 to the recombinant E. coli cell culture yielded most of the metabolites in both the C-23 and C-24 hydroxylation pathways. Thus, the E. coli expression system for human CYP24 appears quite useful in predicting the metabolism of vitamin D analogs used as drugs.  相似文献   

17.
18.
A new vitamin D3 metabolite was isolated in pure form (18.2 micrograms) from the serum of rats given large doses (two doses of 26 mumol/rat) of vitamin D3. The new metabolite has been unequivocally identified as 3 beta, 25-dihydroxy-9,10-seco-5,7,10(19)-cholestatrieno-26,23-peroxylactone by ultraviolet absorption spectrophotometry, Fourier transform infrared spectrophotometry, mass spectrometry, field desorption mass spectrometry, and specific chemical reaction with triphenyl phosphine. The stereochemical configuration at the C-23 and c-25 positions of the 25-hydroxyvitamin D3-26-23-peroxylactone was definitely determined to be the 23(S)25(R),25-hydroxyvitamin D3-26,23-peroxylactone is suggested for this metabolite. The isolation involved chloroform-methanol extraction and four column chromatographic procedures. The metabolite purification and elution position on these columns were followed by UV measurement at 264 nm. This metabolite was ultimately resolved from the previously known 25-hydroxyvitamin D3-26,23-lactone by high pressure liquid chromatography using a Zorbax Sil column. The 25-hydroxyvitamin D3-26,23-peroxylactone was converted upon storage at room temperature or -20 degrees C into the 25-hydroxyvitamin D3-26,23-lactone. Since under the conditions of this isolation only the 26,23-peroxylactone and no 26,23-lactone of 25-hydroxyvitamin D3 was present in the rat serum, this suggests that the 25-hydroxyvitamin D3-26,23-peroxylactone is the naturally occurring metabolite.  相似文献   

19.
In our previous study, we indicated for the first time that C-28 hydroxylation plays a significant role in the metabolism of 1alpha, 25-dihydroxyvitamin D(2) [1alpha,25(OH)(2)D(2)] by identifying 1alpha,24(S),25,28-tetrahydroxyvitamin D(2) [1alpha,24(S),25, 28(OH)(4)D(2)] as a major renal metabolite of 1alpha,25(OH)(2)D(2) [G. S. Reddy and K-Y. Tserng Biochemistry 25, 5328-5336, 1986]. The present study was performed to establish the physiological significance of C-28 hydroxylation in the metabolism of 1alpha, 25(OH)(2)D(2). We perfused rat kidneys in vitro with 1alpha, 25(OH)(2)[26,27-(3)H]D(2) (5 x 10(-10)M) and demonstrated that 1alpha,24(R),25-trihydroxyvitamin D(2) [1alpha,24(R),25(OH)(3)D(2)] and 1alpha,24(S),25,28(OH)(4)D(2) are the only two major physiological metabolites of 1alpha,25(OH)(2)D(2). In the same perfusion experiments, we also noted that there is no conversion of 1alpha,25(OH)(2)D(2) into 1alpha,25,28-trihydroxyvitamin D(2 )[1alpha,25,28(OH)(3)D(2)]. Moreover, 1alpha,24(S),25,28(OH)(4)D(2) is not formed in the perfused rat kidney when synthetic 1alpha,25, 28(OH)(3)D(2) is used as the starting substrate. This finding indicates that C-28 hydroxylation of 1alpha,25(OH)(2)D(2) occurs only after 1alpha,25(OH)(2)D(2) is hydroxylated at C-24 position. At present the enzyme responsible for the C-28 hydroxylation of 1alpha, 24(R),25(OH)(3)D(2) in rat kidney is not known. Recently, it was found that 1alpha,25(OH)(2)D(3)-24-hydroxylase (CYP24) can hydroxylate carbons 23, 24, and 26 of various vitamin D(3) compounds. Thus, it may be speculated that CYP24 may also be responsible for the C-28 hydroxylation of 1alpha,24(R),25(OH)(3)D(2) to form 1alpha, 24(S),25,28(OH)(4)D(2). The biological activity of 1alpha,24(S),25, 28(OH)(4)D(2), determined by its ability to induce intestinal calcium transport and bone calcium resorption in the rat, was found to be almost negligible. Also, 1alpha,24(S),25,28(OH)(4)D(2) exhibited very low binding affinity toward bovine thymus vitamin D receptor. These studies firmly establish that C-28 hydroxylation is an important enzymatic reaction involved in the inactivation of 1alpha,25(OH)(2)D(2) in kidney under physiological conditions.  相似文献   

20.
The secosteroid hormone, 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], induces differentiation of the human promyelocytic leukemia (HL-60) cells into monocytes/macrophages. At present, the metabolic pathways of 1alpha,25(OH)(2)D(3) and the biologic activity of its various natural intermediary metabolites in HL-60 cells are not fully understood. 1alpha,25(OH)(2)D(3) is metabolized in its target tissues via modifications of both the side chain and the A-ring. The C-24 oxidation pathway, the main side chain modification pathway initiated by hydroxylation at C-24 leads to the formation of the end product, calcitroic acid. The C-23 and C-26 oxidation pathways, the minor side chain modification pathways initiated by hydroxylations at C-23 and C-26 respectively together lead to the formation of the end product, 1alpha,25(OH)(2)D(3)-lactone. The C-3 epimerization pathway, the newly discovered A-ring modification pathway is initiated by epimerization of the hydroxyl group at C-3 to form 1alpha,25-dihydroxy-3-epi-vitamin-D(3). We performed the present study first to examine in detail the metabolism of 1alpha,25(OH)(2)D(3) in HL-60 cells and then to assess the ability of the various natural intermediary metabolites of 1alpha,25(OH)(2)D(3) in inducing differentiation and in inhibiting clonal growth of HL-60 cells. We incubated HL-60 cells with [1beta-(3)H] 1alpha,25(OH)(2)D(3) and demonstrated that these cells metabolize 1alpha,25(OH)(2)D(3) mainly via the C-24 oxidation pathway and to a lesser extent via the C-23 oxidation pathway, but not via the C-3-epimerization pathway. Three of the natural intermediary metabolites of 1alpha,25(OH)(2)D(3) derived via the C-24 oxidation pathway namely, 1alpha,24(R),25-trihydroxyvitamin D(3), 1alpha,25-dihydroxy-24-oxovitamin D(3) and 1alpha,23(S),25-trihydroxy-24-oxovitamin D(3) [1alpha,23(S),25(OH)(3)-24-oxo-D(3)] were almost as potent as 1alpha,25(OH)(2)D(3) in terms of their ability to differentiate HL-60 cells into monocytes/macrophages. We then selected 1alpha,23(S),25(OH)(3)-24-oxo-D(3) which has the least calcemic activity among all the three aforementioned natural intermediary metabolites of 1alpha,25(OH)(2)D(3) to examine further its effects on these cells. Our results indicated that 1alpha,23(S),25(OH)(3)-24-oxo-D(3) was also equipotent to its parent in inhibiting clonal growth of HL-60 cells and in inducing expression of CD11b protein. In summary, we report that 1alpha,25(OH)(2)D(3) is metabolized in HL-60 cells into several intermediary metabolites derived via both the C-24 and C-23 oxidation pathways but not via the C-3 epimerization pathway. Some of the intermediary metabolites derived via the C-24 oxidation pathway are found to be almost equipotent to 1alpha,25(OH)(2)D(3) in modulating growth and differentiation of HL-60 cells. In a previous study, the same metabolites when compared to 1alpha,25(OH)(2)D(3) were found to be less calcemic. Thus, the findings of our study suggest that some of the natural metabolites of 1alpha,25(OH)(2)D(3) may be responsible for the final expression of the noncalcemic actions that are presently being attributed to their parent, 1alpha,25(OH)(2)D(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号