首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test the significance of the purine nucleotide cycle in renal ammoniagenesis, studies were conducted with rat kidney cortical slices using glutamate or glutamine labelled in the alpha-amino group with 15N. Glucose production by normal kidney slices with 2 mM-glutamine was equal to that with 3 mM-glutamate. With L-[15N]glutamate as sole substrate, one-third of the total ammonia produced by kidney slices was labelled, indicating significant deamination of glutamate or other amino acids from the cellular pool. Ammonia produced from the amino group of L-[alpha-15N]glutamine was 4-fold higher than from glutamate at similar glucose production rates. Glucose and ammonia formation from glutamine by kidney slices obtained from rats with chronic metabolic acidosis was found to be 70% higher than by normal kidney slices. The contribution of the amino group of glutamine to total ammonia production was similar in both types of kidneys. No 15N was found in the amino group of adenine nucleotides after incubation of kidney slices from normal or chronically acidotic rats with labelled glutamine. Addition of Pi, a strong inhibitor of AMP deaminase, had no effect on ammonia formation from glutamine. Likewise, fructose, which may induce a decrease in endogenous Pi, had no effect on ammonia formation. The data obtained suggest that the contribution of the purine nucleotide cycle to ammonia formation from glutamine in rat renal tissue is insignificant.  相似文献   

2.
Experiments were designed to examine the early events in the initiation of glutamate deamination in kidney. Perfused kidneys from methionine sulfoximine-treated rats formed ammonia from [15N]glutamate via the purine nucleotide cycle. The turnover of the 6-amino group of adenine nucleotides to yield ammonia occurred at the rate of 0.30 mumol/g of kidney/min. This rate is 3-4 times larger than in liver and is in agreement with published rates of the purine nucleotide cycle in kidney. The addition of 0.1 mM fluorocitrate to glutamate perfusions stimulated ammonia formation 3 1/2-fold. The turnover of the 6-amino group of adenine nucleotides increased during the first 5 min after adding fluorocitrate to form ammonia predominately from tissue glutamate and aspartate. This turnover correlates with a 3 1/2-fold increase in kidney tissue IMP levels. As the ATP/ADP ratio fell the purine nucleotide cycle was inhibited and glutamate dehydrogenase was stimulated to form ammonia stoichiometric with glutamate taken up from the perfusate. Ammonia formation via glutamate dehydrogenase occurred at a rate of 1.0 mumol/g of kidney/min. Fluorocitrate completely blocked ammonia formation from aspartate in perfusions. The perfused kidney formed ammonia from aspartate via the purine nucleotide cycle at a rate of 1.0 mumol/g of kidney/min. The results indicate a discrete role for aspartate in renal metabolism. Ammonia formation via the purine nucleotide cycle can occur at significant rates and equal to the rate of ammonia formation from glutamate via glutamate dehydrogenase.  相似文献   

3.
We have studied the relative roles of the glutaminase versus glutamate dehydrogenase (GLDH) and purine nucleotide cycle (PNC) pathways in furnishing ammonia for urea synthesis. Isolated rat hepatocytes were incubated at pH 7.4 and 37 degrees C in Krebs buffer supplemented with 0.1 mM L-ornithine and 1 mM [2-15N]glutamine, [5-15N]glutamine, [15N]aspartate, or [15N]glutamate as the sole labeled nitrogen source in the presence and absence of 1 mM amino-oxyacetate (AOA). A separate series of incubations was carried out in a medium containing either 15N-labeled precursor together with an additional 19 unlabeled amino acids at concentrations similar to those of rat plasma. GC-MS was utilized to determine the precursor product relationship and the flux of 15N-labeled substrate toward 15NH3, the 6-amino group of adenine nucleotides ([6-15NH2]adenine), 15N-amino acids, and [15N]urea. Following 40 min incubation with [15N]aspartate the isotopic enrichment of singly and doubly labeled urea was 70 and 20 atom % excess, respectively; with [15N]glutamate these values were approximately 65 and approximately 30 atom % excess for singly and doubly labeled urea, respectively. In experiments with [15N]aspartate as a sole substrate 15NH3 enrichment exceeded that in [6-NH2]adenine, indicating that [6-15NH2]adenine could not be a major precursor to 15NH3. Addition of AOA inhibited the formation of [15N]glutamate, 15NH3 and doubly labeled urea from [15N]aspartate. However, AOA had little effect on [6-15NH2]adenine production. In experiments with [15N]glutamate, AOA inhibited the formation of [15N]aspartate and doubly labeled urea, whereas 15NH3 formation was increased. In the presence of a physiologic amino acid mixture, [15N]glutamate contributed less than 5% to urea-N. In contrast, the amide and the amino nitrogen of glutamine contributed approximately 65% of total urea-N regardless of the incubation medium. The current data indicate that when glutamate is a sole substrate the flux through GLDH is more prominent in furnishing NH3 for urea synthesis than the flux through the PNC. However, in experiments with medium containing a mixture of amino acids utilized by the rat liver in vivo, the fraction of NH3 derived via GLDH or PNC was negligible compared with the amount of ammonia derived via the glutaminase pathway. Therefore, the current data suggest that ammonia derived from 5-N of glutamine via glutaminase is the major source of nitrogen for hepatic urea-genesis.  相似文献   

4.
[15N]Aspartate and 5-amino-4-imidazolecarboxamide riboside (AICAriboside) were used to evaluate the contribution of the purine nucleotide cycle to ammonia production in renal tubules isolated from control and chronically acidotic rats. Addition of 1 mM AICAriboside to incubation medium containing 2.5 mM [15N] aspartate significantly stimulated production of 15NH3 and 15N in the 6-amino group of adenine nucleotides during a 30-min incubation. In tubules from both control and acidotic animals, the levels of ATP, AMP, and NH3 were increased. In contrast, 5 mM AICAriboside inhibited 15NH3 production and reduced the total purine nucleotide content. In tubules from acidotic rats, enrichment in 15NH3 exceeded that in the 6-amino group of the adenine nucleotides, indicating that no precursor-product relationship existed between the purine nucleotide cycle and ammonia. Conversely, in tubules from control rats, 15N enrichment in the 6-amino group of the adenine nucleotides exceeded that in NH3. This relationship obtained whether or not AICAriboside was included in the incubation mixture. The current investigations show that the metabolism of aspartate through the purine nucleotide cycle is lower in renal tubules obtained from chronically acidotic rats than in control tubules. The observations indicate that AICAriboside has a biphasic effect on renal ammoniagenesis and adenine nucleotide synthesis, and suggest a possible clinical use of AICAriboside in cases of impaired ammonia formation in renal failure.  相似文献   

5.
Gas chromatography-mass spectrometry was utilized to study the metabolism of [15N]glutamate, [2-15N]glutamine, and [5-15N]glutamine in isolated renal tubules prepared from control and chronically acidotic rats. The main purpose was to determine the nitrogen sources utilized by the kidney in various acid-base states for ammoniagenesis. Incubations were performed in the presence of 2.5 mM 15N-labeled glutamine or glutamate. Experiments with [5-15N]glutamine showed that in control animals approximately 90% of ammonia nitrogen was derived from 5-N of glutamine versus 60% in renal tubules from acidotic rats. Experiments with [2-15N]glutamine or [15N]glutamate indicated that in chronic acidosis approximately 30% of ammonia nitrogen was derived either from 2-N of glutamine or glutamate-N by the activity of glutamate dehydrogenase. Flux through glutamate dehydrogenase was 6-fold higher in chronic acidosis versus control. No 15NH3 could be detected in renal tubules from control rats when [2-15N]glutamine was the substrate. The rates of 15N transfer to other amino acids and to the 6-amino groups of the adenine nucleotides were significantly higher in normal renal tubules versus those from chronically acidotic rats. In tubules from chronically acidotic rats, 15N abundance in 15NH3 and the rate of 15NH3 appearance were significantly higher than that of either the 6-amino group of adenine nucleotides or the 15N-amino acids studied. The data indicate that glutamate dehydrogenase activity rather than glutamate transamination is primarily responsible for augmented ammoniagenesis in chronic acidosis. The contribution of the purine nucleotide cycle to ammonia formation appears to be unimportant in renal tubules from chronically acidotic rats.  相似文献   

6.
Utilization of [15N]glutamate by cultured astrocytes.   总被引:2,自引:1,他引:1       下载免费PDF全文
The metabolism of 0.25 mM-[15N]glutamic acid in cultured astrocytes was studied with gas chromatography-mass spectrometry. Almost all 15N was found as [2-15N]glutamine, [2-15N]glutamine, [5-15N]glutamine and [15N]alanine after 210 min of incubation. Some incorporation of 15N into aspartate and the 6-amino position of the adenine nucleotides also was observed, the latter reflecting activity of the purine nucleotide cycle. After the addition of [15N]glutamate the ammonia concentration in the medium declined, but the intracellular ATP concentration was unchanged despite concomitant ATP consumption in the glutamine synthetase reaction. Some potential sources of glutamate nitrogen were identified by incubating the astrocytes for 24 h with [5-15N]glutamine, [2-15N]glutamine or [15N]alanine. Significant labelling of glutamate was noted with addition of glutamine labelled on either the amino or the amide moiety, reflecting both glutaminase activity and reductive amination of 2-oxoglutarate in the glutamate dehydrogenase reaction. Alanine nitrogen also is an important source of glutamate nitrogen in this system.  相似文献   

7.
The metabolism of 2.5 mM-[15N]aspartate in cultured astrocytes was studied with gas chromatography-mass spectrometry. Three primary metabolic pathways of aspartate nitrogen disposition were identified: transamination with 2-oxoglutarate to form [15N]glutamate, the nitrogen of which subsequently was transferred to glutamine, alanine, serine and ornithine; condensation with IMP in the first step of the purine nucleotide cycle, the aspartate nitrogen appearing as [6-amino-15N]adenine nucleotides; condensation with citrulline to form argininosuccinate, which is cleaved to yield [15N]arginine. Of these three pathways, the formation of arginine was quantitatively the most important, and net nitrogen flux to arginine was greater than flux to other amino acids, including glutamine. Notwithstanding the large amount of [15N]arginine produced, essentially no [15N]urea was measured. Addition of NaH13CO3 to the astrocyte culture medium was associated with the formation of [13C]citrulline, thus confirming that these cells are capable of citrulline synthesis de novo. When astrocytes were incubated with a lower (0.05 mM) concentration of [15N]aspartate, most 15N was recovered in alanine, glutamine and arginine. Formation of [6-amino-15N]adenine nucleotides was diminished markedly compared with results obtained in the presence of 2.5 mM-[15N]aspartate.  相似文献   

8.
The present investigation evaluates the effect of AICA-Riboside on the synthesis of purine nucleotides and the growth of normal rat kidney cells in culture. Experiments in the presence and absence of various concentrations of AICA-Riboside were conducted with Dulbecco's Modified Eagle's Medium supplemented with either 1 mM [15N]aspartate or [14N]aspartate. Addition of 50 microM AICA-Riboside to the incubation medium significantly stimulated intracellular adenine nucleotide concentrations following incubation for 48 hours. This stimulation was associated with augmented cell growth and DNA concentration. In contrast, with concentrations above 100 microM of AICA-Riboside in the incubation medium, there was a remarkable inhibition of cell growth and a significant depletion of intracellular pools of adenine nucleotides and DNA. Experiments with [15N]aspartate showed that the initial rate (0-24 hours) of [6-15NH2]adenine nucleotide formation from 1 mM [15N]aspartate was 38.8 +/- 9.6, 67.9 +/- 12.5, and 20.1 +/- 3.8 pmol h-1/10(6) cells in the presence of 0 (control), 50 microM and 500 microM AICA-Riboside, respectively. These observations indicate that the main effect of AICA-Riboside is on the formation of AMP from aspartate and IMP via the sequential action of adenylosuccinate synthetase and adenylosuccinate lyase. The current studies suggest that AICA-Riboside could be used as a factor mediating renal cell mitosis in culture. AICA-Riboside has a biphasic effect on the growth of renal epithelial cells in culture and on their intracellular purine nucleotides and DNA concentration.  相似文献   

9.
Abstract: The pathways of nitrogen transfer from 50 μM [15N]aspartate were studied in rat brain synaptosomes and cultured primary rat astrocytes by using gas chromatography-mass spectrometry technique. Aspartate was taken up rapidly by both preparations, but the rates of transport were faster in astrocytes than in synaptosomes. In synaptosomes, 15N was incorporated predominantly into glutamate, whereas in glial cells, glutamine and other 15N-amino acids were also produced. In both preparations, the initial rate of N transfer from aspartate to glutamate was within a factor of 2-3 of that in the opposite direction. The rates of transamination were greater in synaptosomes than in astrocytes. Omission of glucose increased the formation of [15N]-glutamate in synaptosomes, but not in astrocytes. Rotenone substantially decreased the rate of transamination. There was no detectable incorporation of 15N from labeled aspartate to 6-amino-15N-labeled adenine nucleotides during 60-min incubation of synaptosomes under a variety of conditions; however, such activity could be demonstrated in glial cells. The formation of 15N-labeled adenine nucleotides was marginally increased by the presence of 1 mM aminooxyacetate, but was unaffected by pretreatment with 1 mM 5-amino-4-imidazolecarboxamide ribose. It is concluded that (1) aspartate aminotransferase is near equilibrium in both synaptosomes and astrocytes under cellular conditions, but the rates of transamination are faster in the nerve endings; (2) in the absence of glucose, use of amino acids for the purpose of energy production increases in synaptosomes, but may not do so in glial cells because the latter possess larger glycogen stores; and (3) nerve endings have a very limited capacity for salvage of the adenine nucleotides via the purine nucleotide cycle.  相似文献   

10.
Glutamate is the most abundant excitatory neurotransmitter in the brain and astrocytes are key players in sustaining glutamate homeostasis. Astrocytes take up the predominant part of glutamate after neurotransmission and metabolism of glutamate is necessary for a continuous efficient removal of glutamate from the synaptic area. Glutamate may either be amidated by glutamine synthetase or oxidatively metabolized in the mitochondria, the latter being at least to some extent initiated by oxidative deamination by glutamate dehydrogenase (GDH). To explore the particular importance of GDH for astrocyte metabolism we have knocked down GDH in cultured cortical astrocytes employing small interfering RNA (siRNA) achieving a reduction of the enzyme activity by approximately 44%. The astrocytes were incubated for 2h in medium containing either 1.0mM [(15)NH(4)(+)] or 100μM [(15)N]glutamate. For those exposed to [(15)N]glutamate an additional 100μM was added after 1h. Metabolic mapping was performed from isotope incorporation measured by mass spectrometry into relevant amino acids of cell extracts and media. The contents of the amino acids were measured by HPLC. The (15)N incorporation from [(15)NH(4)(+)] into glutamate, aspartate and alanine was decreased in astrocytes exhibiting reduced GDH activity. However, the reduced GDH activity had no effect on the cellular contents of these amino acids. This supports existing in vivo and in vitro studies that GDH is predominantly working in the direction of oxidative deamination and not reductive amination. In contrast, when exposing the astrocytes to [(15)N]glutamate, the reduced GDH activity led to an increased (15)N incorporation into glutamate, aspartate and alanine and a large increase in the content of glutamate and aspartate. Surprisingly, this accumulation of glutamate and net-synthesis of aspartate were not reflected in any alterations in either the glutamine content or labeling, but a slight increase in mono labeling of glutamine in the medium. We suggest that this extensive net-synthesis of aspartate due to lack of GDH activity is occurring via the concerted action of AAT and the part of TCA cycle operating from α-ketoglutarate to oxaloacetate, i.e. the truncated TCA cycle.  相似文献   

11.
Effects of ischaemia on metabolite concentrations in rat liver   总被引:24,自引:21,他引:3       下载免费PDF全文
1. Changes in the concentrations of ammonia, glutamine, glutamate, 2-oxoglutarate, 3-hydroxybutyrate, acetoacetate, alanine, aspartate, malate, lactate, pyruvate, NAD(+), NADH and adenine nucleotides were measured in freeze-clamped rat liver during ischaemia. 2. Although the concentrations of most of the metabolites changed rapidly during ischaemia the ratios [glutamate]/[2-oxoglutarate][NH(4) (+)] and [3-hydroxybutyrate]/[acetoacetate] changed equally and the value of the expression [3-hydroxybutyrate][2-oxoglutarate][NH(4) (+)]/[acetoacetate][glutamate] remained approximately constant, indicating that the 3-hydroxybutyrate dehydrogenase and glutamate dehydrogenase systems were at near-equilibrium with the mitochondrial NAD(+) couple. 3. The value of the expression [alanine][oxoglutarate]/[pyruvate][glutamate] was about 0.7 in vivo and remained fairly constant during the ischaemic period of 5min, although the concentrations of alanine and oxoglutarate changed substantially. No explanation can be offered why the value of the ratio differed from that of the equilibrium constant of the alanine aminotransferase reaction, which is 1.48. 4. Injection of l-cycloserine 60min before the rats were killed increased the concentration of alanine in the liver fourfold and decreased the concentration of the other metabolites measured, except that of pyruvate. During ischaemia the concentration of alanine did not change but that of aspartate almost doubled. 5. After treatment with l-cycloserine the value in vivo of the expression [alanine][oxoglutarate]/[pyruvate][glutamate] rose from 0.7 to 2.4. During ischaemia the value returned to 0.8. 6. The effects of l-cycloserine are consistent with the assumption that it specifically inhibits alanine aminotransferase. 7. Most of the alanine formed during ischaemia is probably derived from pyruvate and from ammonia released by the deamination of adenine nucleotides and glutamine. The alanine is presumably formed by the combined action of glutamate dehydrogenase and alanine aminotransferase. 8. The rate of anaerobic glycolysis, calculated from the increase in the lactate concentration, was 1.3mumol/min per g fresh wt. 9. Although the concentrations of the adenine nucleotides changed rapidly during ischaemia, the ratio [ATP][AMP]/[ADP](2) remained constant at 0.54, indicating that adenylate kinase established near-equilibrium under these conditions.  相似文献   

12.
Sources of ammonia for mammalian urea synthesis.   总被引:4,自引:4,他引:0       下载免费PDF全文
The initial rate of incorporation of [15N]alanine into the 6-amino group of the adenine nucleotides in rat hepatocytes was about one-eighteenth of the rate of incorporation into urea. Thus the purine nucleotide cycle cannot provide most of the ammonia needed in urea synthesis for the carbamoyl phosphate synthase reaction (EC 2.7.2.5). On the other hand, contrary to the view expressed by McGivan & Chappell [(1975) FEBS Lett. 52, 1--7], the experiments support the view that hepatic glutamate dehydrogenase can supply the required ammonia.  相似文献   

13.
Glutamine-free culture of Vero cells has previously been shown to cause higher cell yield and lower ammonia accumulation than that in glutamine-containing culture. Nitrogen metabolism of asparagine and glutamate as glutamine replacer was studied here using nuclear magnetic resonance (NMR) spectroscopy. 15N-labelled glutamate or asparagine was added and their incorporation into nitrogenous metabolites was monitored by heteronuclear multiple bond coherence (HMBC) NMR spectroscopy. In cells incubated with l-[15N]glutamate, the 15N label was subsequently found in a number of metabolites including alanine, aspartate, proline, and an unidentified compound. No detectable signal occurred, indicating that glutamate was utilized by transamination rather than by oxidative deamination. In cells incubated with l-[2-15N]asparagine, the 15N label was subsequently found in aspartate, the amine group of glutamate/glutamine, and in two unidentified compounds. Incubation of cells with l-[4-15N]asparagine showed that the amide nitrogen of asparagine was predominantly transferred to glutamine amide. There was no detectable production of , showing that most of the asparagine amide was transaminated by asparagine synthetase rather than deaminated by asparaginase. Comparing with a glutamine-containing culture, the activities of phosphate-activated glutaminase (PAG), glutamate dehydrogenase (GDH) and alanine aminotransferase (ALT) decreased significantly and the activity of aspartate aminotransferase (AST) decreased slightly.  相似文献   

14.
This study examines the role of glucagon and insulin in the incorporation of (15)N derived from (15)N-labeled glutamine into aspartate, citrulline and, thereby, [(15)N]urea isotopomers. Rat livers were perfused, in the nonrecirculating mode, with 0.3 mM NH(4)Cl and either 2-(15)N- or 5-(15)N-labeled glutamine (1 mM). The isotopic enrichment of the two nitrogenous precursor pools (ammonia and aspartate) involved in urea synthesis as well as the production of [(15)N]urea isotopomers were determined using gas chromatography-mass spectrometry. This information was used to examine the hypothesis that 5-N of glutamine is directly channeled to carbamyl phosphate (CP) synthesis. The results indicate that the predominant metabolic fate of [2-(15)N] and [5-(15)N]glutamine is incorporation into urea. Glucagon significantly stimulated the uptake of (15)N-labeled glutamine and its metabolism via phosphate-dependent glutaminase (PDG) to form U(m+1) and U(m+2) (urea containing one or two atoms of (15)N). However, insulin had little effect compared with control. The [5-(15)N]glutamine primarily entered into urea via ammonia incorporation into CP, whereas the [2-(15)N]glutamine was predominantly incorporated via aspartate. This is evident from the relative enrichments of aspartate and of citrulline generated from each substrate. Furthermore, the data indicate that the (15)NH(3) that was generated in the mitochondria by either PDG (from 5-(15)N) or glutamate dehydrogenase (from 2-(15)N) enjoys the same partition between incorporation into CP or exit from the mitochondria. Thus, there is no evidence for preferential access for ammonia that arises by the action of PDG to carbamyl-phosphate synthetase. To the contrary, we provide strong evidence that such ammonia is metabolized without any such metabolic channeling. The glucagon-induced increase in [(15)N]urea synthesis was associated with a significant elevation in hepatic N-acetylglutamate concentration. Therefore, the hormonal regulation of [(15)N]urea isotopomer production depends upon the coordinate action of the mitochondrial PDG pathway and the synthesis of N-acetylglutamate (an obligatory activator of CP). The current study may provide the theoretical and methodological foundations for in vivo investigations of the relationship between the hepatic urea cycle enzyme activities, the flux of (15)N-labeled glutamine into the urea cycle, and the production of urea isotopomers.  相似文献   

15.
Cerebral hyperammonemia is a hallmark of hepatic encephalopathy, a debilitating condition arising secondary to liver disease. Pyruvate oxidation including tricarboxylic acid (TCA) cycle metabolism has been suggested to be inhibited by hyperammonemia at the pyruvate and -ketoglutarate dehydrogenase steps. Catabolism of the branched-chain amino acid isoleucine provides both acetyl-CoA and succinyl-CoA, thus by-passing both the pyruvate dehydrogenase and the -ketoglutarate dehydrogenase steps. Potentially, this will enable the TCA cycle to work in the face of ammonium-induced inhibition. In addition, this will provide the -ketoglutarate carbon skeleton for glutamate and glutamine synthesis by glutamate dehydrogenase and glutamine synthetase (astrocytes only), respectively, both reactions fixing ammonium. Cultured cerebellar neurons (primarily glutamatergic) or astrocytes were incubated in the presence of either [U-13C]glucose (2.5 mM) and isoleucine (1 mM) or [U-13C]isoleucine and glucose. Cell cultures were treated with an acute ammonium chloride load of 2 (astrocytes) or 5 mM (neurons and astrocytes) and incorporation of 13C-label into glutamate, aspartate, glutamine and alanine was determined employing mass spectrometry. Labeling from [U-13C]glucose in glutamate and aspartate increased as a result of ammonium-treatment in both neurons and astrocytes, suggesting that the TCA cycle was not inhibited. Labeling in alanine increased in neurons but not in astrocytes, indicating elevated glycolysis in neurons. For both neurons and astrocytes, labeling from [U-13C]isoleucine entered glutamate and aspartate albeit to a lower extent than from [U-13C]glucose. Labeling in glutamate and aspartate from [U-13C]isoleucine was decreased by ammonium treatment in neurons but not in astrocytes, the former probably reflecting increased metabolism of unlabeled glucose. In astrocytes, ammonia treatment resulted in glutamine production and release to the medium, partially supported by catabolism of [U-13C]isoleucine. In conclusion, i) neuronal and astrocytic TCA cycle metabolism was not inhibited by ammonium and ii) isoleucine may provide the carbon skeleton for synthesis of glutamate/glutamine in the detoxification of ammonium.  相似文献   

16.
This review focuses on the ammonia and amino acid metabolic responses of active human skeletal muscle, with a particular emphasis on steady-state exercise. Ammonia production in skeletal muscle involves the purine nucleotide cycle and the amino acids glutamate, glutamine, and alanine and probably also includes the branched chain amino acids as well as aspartate. Ammonia production is greatest during prolonged, steady state exercise that requires 60-80% VO2max and is associated with glutamine and alanine metabolism. Under these circumstances it is unresolved whether the purine nucleotide cycle (AMP deamination) is active; if so, it must be cycling with no IMP accumulation. It is proposed that under these circumstances the ammonia is produced from slow twitch fibers by the deamination of the branched chain amino acids. The ammonia response can be suppressed by increasing the carbohydrate availability and this may be mediated by altering the availability of the branched chain amino acids. The fate of the ammonia released into the circulation is unresolved, but there is indirect evidence that a considerable portion may be excreted by the lung in expired air.  相似文献   

17.
The ammoniogenetic capacity of some L-amino acids in rat heart muscle was studied. It was shown that [15N]leucine, [15N]glutamate and [15N]aspartate are involved in ammonia production without being the major source of this compound. The amount of [15N]ammonia produced by [15N]amino acids makes up to 0.25% of its total content. The deamination of L-[15N]leucine catalyzed by 2-oxoglutarate occurred at the highest rate. The [15N]aspartate and [15N]glutamate appeared to be less efficient precursors of ammonia. The bulk of amino nitrogen of L-[15N]amino acids was incorporated into the proteins and free amino acids in heart muscle.  相似文献   

18.
1. Rats were infused with 15NH4+ or L-[15N]alanine to induce hyperammonaemia, a potential cause of hepatic encephalopathy. HClO4 extracts of freeze-clamped brain, liver and kidney were analysed by 15N-n.m.r. spectroscopy in combination with biochemical assays to investigate the effects of hyperammonaemia on tissue concentrations of ammonia, glutamine, glutamate and urea. 2. 15NH4+ infusion resulted in a 36-fold increase in the concentration of blood ammonia. Cerebral glutamine concentration increased, with 15NH4+ incorporated predominantly into the gamma-nitrogen atom of glutamine. Incorporation into glutamate was very low. Cerebral ammonia concentration increased 5-10-fold. The results suggest that the capacity of glutamine synthetase for ammonia detoxification was saturated. 3. Pretreatment with the glutamine synthetase inhibitor L-methionine DL-sulphoximine resulted in 84% inhibition of [gamma-15N]glutamine synthesis, but incorporation of 15N into other metabolites was not observed. The result suggests that no major alternative pathway for ammonia detoxification, other than glutamine synthetase, exists in rat brain. 4. In the liver 15NH4+ was incorporated into urea, glutamine, glutamate and alanine. The specific activity of 15N was higher in the gamma-nitrogen atom of glutamine than in urea. A similar pattern was observed when [15N]alanine was infused. The results are discussed in terms of the near-equilibrium states of the reactions involved in glutamate and alanine formation, heterogeneous distribution in the liver lobules of the enzymes involved in ammonia removal and their different affinities for ammonia. 5. Synthesis of glutamine, glutamate and hippurate de novo was observed in kidney. Hippurate, as well as 15NH4+, was contributed by co-extracted urine. 6. The potential utility and limitations of 15N n.m.r. for studies of mammalian metabolism in vivo are discussed.  相似文献   

19.
Glutamate and aspartate showed the highest rate of catabolism in oxygenated isolated rat heart with the formation of glutamine, asparagine and alanine. Under anoxia, the catabolism of branch chained amino acids and that of lysine, proline, arginine and methionine was inhibited. However, glutamate and aspartate catabolized at a higher rate as compared with oxygenation. Alanine was the product of their excessive degradation. During oxygenation, 70% of ammonia were produced via deamination of amino acids. Under anaerobic conditions the participation of amino acids in ammoniagenesis decreased to 4%; the principal source of ammonia was the adenine nucleotide pool. The total pool of the tricarboxylic acid cycle intermediates increased 2.5-fold due to accumulation of succinate. The data obtained suggest that the constant influx of intermediates into the cycle from amino acids is supported by coupled transamination of glutamate and aspartate. This leads to the formation of ATP and GTP in the tricarboxylic acid cycle during blocking of aerobic energy production.  相似文献   

20.
1H/15N and 13C NMR were used to investigate metabolism in Spodoptera frugiperda (Sf9) cells. Labelled substrates ([2-15N]glutamine, [5-15N]glutamine, [2-15N]glutamate, 15NH4Cl, [2-15N]alanine, and [1-13C]glucose) were added to batch cultures and the concentration of labelled excreted metabolites (alanine, NH4+, glutamine, glycerol, and lactate) were quantified. Cultures with excess glucose and glutamine produce alanine as the main metabolic by-product while no ammonium ions are released. 1H/15N NMR data showed that both the amide and amine-nitrogen of glutamine was incorporated into alanine in these cultures. The amide-nitrogen of glutamine was not transferred to the amine-position in glutamate (for further transamination to alanine) via free NH4+ but directly via an azaserine inhibitable amido-transfer reaction. In glutamine-free media 15NH4+ was consumed and incorporated into alanine. 15NH4+ was also incorporated into the amide-position of glutamine synthesised by the cells. These data suggest that the nitrogen assimilation system, glutamine synthetase/glutamate synthase (NADH-GOGAT), is active in glutamine-deprived cells. In cultures devoid of glucose, ammonium is the main metabolic by-product while no alanine is formed. The ammonium ions stem both from the amide and amine-nitrogen of glutamine, most likely via glutaminase and glutamate dehydrogenase. 13C NMR revealed that the [1-13C] label from glucose appeared in glycerol, alanine, lactate, and in extracellular glutamine. Labelling data also showed that intermediates of the tricarboxylic acid cycle were recycled to glycolysis and that carbon sources, other than glucose-derived acetylCoA, entered the cycle. Furthermore, Sf9 cell cultures excreted significant amounts glycerol (1.9-3.2 mM) and ethanol (6 mM), thus highlighting the importance of sinks for reducing equivalents in maintaining the cytosolic redox balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号