首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our understanding of epithelial development in Drosophila has been greatly improved in recent years. Two key regulators of epithelial polarity, Crumbs and DE-cadherin, have been studied at the genetic and molecular levels and a number of additional genes are being analyzed that contribute to the differentiation of epithelial cell structure. Epithelial architecture has a profound influence on morphogenetic movements, patterning and cell-type determination. The combination of embryological and genetic/molecular tools in Drosophila will help us to elucidate the complex events that determine epithelial cell structure and how they relate to morphogenesis and other developmental processes.  相似文献   

2.
3.
A protein interaction map for cell polarity development   总被引:20,自引:0,他引:20       下载免费PDF全文
Many genes required for cell polarity development in budding yeast have been identified and arranged into a functional hierarchy. Core elements of the hierarchy are widely conserved, underlying cell polarity development in diverse eukaryotes. To enumerate more fully the protein-protein interactions that mediate cell polarity development, and to uncover novel mechanisms that coordinate the numerous events involved, we carried out a large-scale two-hybrid experiment. 68 Gal4 DNA binding domain fusions of yeast proteins associated with the actin cytoskeleton, septins, the secretory apparatus, and Rho-type GTPases were used to screen an array of yeast transformants that express approximately 90% of the predicted Saccharomyces cerevisiae open reading frames as Gal4 activation domain fusions. 191 protein-protein interactions were detected, of which 128 had not been described previously. 44 interactions implicated 20 previously uncharacterized proteins in cell polarity development. Further insights into possible roles of 13 of these proteins were revealed by their multiple two-hybrid interactions and by subcellular localization. Included in the interaction network were associations of Cdc42 and Rho1 pathways with proteins involved in exocytosis, septin organization, actin assembly, microtubule organization, autophagy, cytokinesis, and cell wall synthesis. Other interactions suggested direct connections between Rho1- and Cdc42-regulated pathways; the secretory apparatus and regulators of polarity establishment; actin assembly and the morphogenesis checkpoint; and the exocytic and endocytic machinery. In total, a network of interactions that provide an integrated response of signaling proteins, the cytoskeleton, and organelles to the spatial cues that direct polarity development was revealed.  相似文献   

4.
The development of the tracheal system of Drosophila melanogaster represents a paradigm for studying the molecular mechanisms involved in the formation of a branched tubular network. Tracheogenesis has been characterized at the morphological, cellular and genetic level and a series of successive, but linked events have been described as the basis for the formation of the complex network of tubules which extend over the entire organism. Tracheal cells stop to divide early in the process of tracheogenesis and the formation of the interconnected network requires highly controlled cell migration events and cell shape changes. A number of genes involved in these two processes have been identified but in order to obtain a more complete view of branching morphogenesis, many more genes carrying essential functions have to be isolated and characterized. Here, we provide a progress report on our attempts to identify further genes expressed in the tracheal system. We show that empty spiracles (ems), a head gap gene, is required for the formation of a specific tracheal branch, the visceral branch. We also identified a Sulfotransferase and a Multiple Inositol Polyphosphate phosphatase that are strongly upregulated in tracheal cells and discuss their possible involvement in tracheal development.  相似文献   

5.
Zhu Y  Li Z  Xu B  Li H  Wang L  Dong A  Huang H 《植物学报(英文版)》2008,50(7):897-905
During leaf organogenesis, a critical step for normal leaf primordium initiation is the repression of the class 1 KNOTTED1-like homeobox (KNOX) genes. After leaf primordia are formed, they must establish polarity for normal leaf morphogenesis.Recent studies have led to the identification of a number of genes that participate in the class 1 KNOX gene repression and/or the leaf polarity establishment. ASTMMETRIC LEAVES1 and 2 (AS1 and AS2) are two of these genes, which are critical for both of these two processes. As a first step towards understanding the molecular genetic basis of the AS1-AS2 action, we determined the subcellular Iocalizations of the two proteins in both tobacco BY2 cells and Arabidopsis plants,by fusing them to yellow/cyan fluorescent protein (YFPICFP). Our data showed that AS1 and AS2 alone were predominantly localized in the nucleolus and the nucleoplasm, respectively. The presence of both AS1 and AS2 proteins in the same interphase cell demonstrated their co-localization in both nucleolus and nucleoplasm. In addition, AS1 alone was able to associate with the condensed chromosome in the metaphase cell. Our data suggest that AS1, AS2 and the AS1-AS2 protein complex may have distinct functions, which are all required for normal plant development.  相似文献   

6.
《The Journal of cell biology》1995,131(6):1529-1538
To identify new genes involved in the control of cell morphogenesis in the fission yeast Schizosaccharomyces pombe we have visually screened for temperature-sensitive mutants that show defects in cell morphology. We have isolated and characterized 64 mutants defining 19 independent genes, 10 of which have not been previously described. One class of mutants, defining 12 orb genes, become round and show a complete loss of cell polarity. A second class of mutants exhibits branched or bent morphologies. These mutants show defects in either selection of the growth site, defining two tea genes, or in the maintenance of growth direction, defining five ban genes. Immunofluorescence analysis of these morphological mutants shows defects in the organization of the microtubule and actin cytoskeleton. These defects include shortened, bundled, and asymmetrically localized microtubules and enlarged and mislocalized actin patches. Analysis of the mutant phenotypes has allowed us to order the genes into four groups according to their function during the cell cycle: genes required for the maintenance of cell polarity throughout the cell cycle; genes necessary only for the reestablishment of cell polarity after mitosis and not for maintaining cell polarity once it is established; genes essential for the transition from monopolar to bipolar growth and genes that severe as ''polarity markers''.  相似文献   

7.
8.
The development of the modern methodologies of cell biologyin the fifties and sixties and of molecular biology in the seventiesand eighties has led to a reductionist view of embryonic developmentthat centers on the cell and the gene as the functional unitsof development. The functional units in most inductive and morphogeneticprocesses in the embryo are not single cells, however, but ratherare collectives of interacting cells that give rise to the tissuesand organs. Can these methodological developments reconcilea molecular analysis with the fact that form arises epigeneticallyfrom the increasing number of embryonic cells during development?To answer this question one must link genetic regulation tomechanochemical processes that coordinate cell division, cellmovement and cell death. Recent studies of cell adhesion suggestthat one such link is provided by cell adhesion molecules (CAMs)that mediate cell-cell binding. These studies suggest that CAMsare involved in defining cell collectives and their bordersas they interact during inductive events in morphogenesis. AlthoughCAMs cannot be considered the "cause" of induction, they playkey roles among the complex causal chains of inductive interactionsinvolving hormones and growth-factors, extracellular matrixcomponents and cellular receptors. We provide here a brief summaryof modern developments in the field centered about the functionof CAMs in morphogenesis and using recent experimental resultsin the developing feather as a paradigmatic example.  相似文献   

9.
Cell polarity genes have important functions in photoreceptor morphogenesis. Based on recent discovery of stabilized microtubule cytoskeleton in developing photoreceptors and its role in photoreceptor cell polarity, microtubule associated proteins might have important roles in controlling cell polarity proteins' localizations in developing photoreceptors. Here, Tau, a microtubule associated protein, was analyzed to find its potential role in photoreceptor cell polarity. Tau colocalizes with acetylated/stabilized microtubules in developing pupal photoreceptors. Although it is known that tau mutant photoreceptor has no defects in early eye differentiation and development, it shows dramatic disruptions of cell polarity proteins, adherens junctions, and the stable microtubules in developing pupal photoreceptors. This role of Tau in cell polarity proteins' localization in photoreceptor cells during the photoreceptor morphogenesis was further supported by Tau's overexpression studies. Tau overexpression caused dramatic expansions of apical membrane domains where the polarity proteins localize in the developing pupal photoreceptors. It is also found that Tau's role in photoreceptor cell polarity depends on Par‐1 kinase. Furthermore, a strong genetic interaction between tau and crumbs was found. It is found that Tau has a crucial role in cell polarity protein localization during pupal photoreceptor morphogenesis stage, but not in early eye development including eye cell differentiation.  相似文献   

10.
Bud-site selection and cell polarity in budding yeast   总被引:1,自引:0,他引:1  
Polarized growth involves a hierarchy of events such as selection of the growth site, polarization of the cytoskeleton to the selected growth site, and transport of secretory vesicles containing components required for growth. The budding yeast Saccharomyces cerevisiae is an excellent model system for the study of polarized cell growth. A large number of proteins have been found to be involved in these processes, although their mechanisms of action are not yet well-understood. Recent discoveries have helped elucidate many of the processes involved in cell polarity and bud-site selection in yeast and have modified the traditional view of cellular structures involved in these processes. This review focuses on recent advances on the roles of cortical tags, GTPases and the cytoskeleton in the generation and maintenance of cell polarity in yeast.  相似文献   

11.
Roles of the JNK signaling pathway in Drosophila morphogenesis.   总被引:1,自引:0,他引:1  
Epithelial cell differentiation and morphogenesis are crucial in many aspects of metazoan development. Recent genetic studies in Drosophila have revealed that the conserved Jun amino-terminal kinase (JNK) signaling pathway regulates epithelial morphogenesis during the process of embryonic dorsal closure and participates in the control of planar polarity in several tissues. Importantly, these studies have linked the JNK pathway to the decapentaplegic and Frizzled pathways in these processes, suggesting a high degree of integrative signaling during epithelial morphogenesis.  相似文献   

12.
Cell morphogenesis is of fundamental significance in all eukaryotes for development, differentiation, and cell proliferation. In fission yeast, Drosophila Furry-like Mor2 plays an essential role in cell morphogenesis in concert with the NDR/Tricornered kinase Orb6. Mutations of these genes result in the loss of cell polarity. Here we show that the conserved proteins, MO25-like Pmo25, GC kinase Nak1, Mor2, and Orb6, constitute a morphogenesis network that is important for polarity control and cell separation. Intriguingly, Pmo25 was localized at the mitotic spindle pole bodies (SPBs) and then underwent translocation to the dividing medial region upon cytokinesis. Pmo25 formed a complex with Nak1 and was required for both the localization and kinase activity of Nak1. Pmo25 and Nak1 in turn were essential for Orb6 kinase activity. Further, the Pmo25 localization at the SPBs and the Nak1-Orb6 kinase activities during interphase were under the control of the Cdc7 and Sid1 kinases in the septation initiation network (SIN), suggesting a functional linkage between SIN and the network for cell morphogenesis/separation following cytokinesis.  相似文献   

13.
V Snell  P Nurse 《The EMBO journal》1994,13(9):2066-2074
We have initiated a study to identify genes regulating cell morphogenesis in the fission yeast Schizosaccharomyces pombe. Five genes have been identified, orb1-orb5, whose mutation gives rise to spherical cells, indicative of an inability to polarize growth. Two further genes have been identified, tea1 and ban1, whose mutant alleles have disturbed patterns of tip growth, leading to T-shaped and curved cells. In fission yeast, sites of cell wall deposition are defined by actin localization, with actin distributions and therefore growth patterns undergoing cell cycle stage-specific reorganization. Studies of double mutants constructed between orb5-19 and various cdc mutants blocked before and after cell division show that orb5 is required for the re-establishment of polar growth following cytokinesis. This indicates that the mutant allele orb5-19 is defective in the reinitiation of polarized growth, even though actin reorganization to the cell tips occurs normally. orb5 encodes a fission yeast homologue of casein kinase II alpha. We propose that this kinase plays a role in the translation of cell polarity into polarized growth, but not in the establishment of polarity itself.  相似文献   

14.
15.
Closure of the neural tube is essential for normal development of the brain and spinal cord. Failure of closure results in neural tube defects (NTDs), common and clinically severe congenital malformations whose molecular mechanisms remain poorly understood. On the other hand, it is increasingly well established that common molecular mechanisms are employed to regulate morphogenesis of multicellular organisms. For example, signaling triggered by polypeptide growth factors is highly conserved among species and utilized in multiple developmental processes. Recent studies have revealed that the Drosophila planar cell polarity (PCP) pathway, which directs position and direction of wing hairs on the surface of the fly wing, is well conserved, and orthologs of several genes encoding components of the pathway are also found in vertebrates. Interestingly, in vertebrates, this signaling pathway appears to be co-opted to regulate "convergent extension" cell movements during gastrulation. Disruption of vertebrate PCP genes in Xenopus laevis or zebrafish causes severe gastrulation defects or the shortening of the trunk, as well as mediolateral expansion of somites. In Xenopus, in which the neural tube closes by elevation and fusion of neural folds, inhibition of convergent extension can also prevent neural tube closure causing a "spina bifida-like" appearance. Furthermore, several of the genes involved in the PCP pathway have recently been shown to be required for neural tube closure in the mouse, since mutation of these genes causes NTDs. Therefore, understanding the mechanisms underlying the establishment of cell polarity in Drosophila may provide important clues to the molecular basis of NTDs.  相似文献   

16.
A review of mitosis in the fission yeast Schizosaccharomyces pombe   总被引:2,自引:0,他引:2  
Mitosis and cell division are the final events of the cell cycle, resulting in the precise segregation of chromosomes into two daughter cells. A highly controlled and accurate segregation of the chromosomes is required to ensure that each daughter cell receives a complete genome and remains viable. The fission yeast, Schizosaccharomyces pombe, is a unicellular eukaryotic organism which is particularly convenient for investigating these problems. It is very amenable to genetic analysis and its predominantly haploid life cycle has allowed the isolation of recessive temperature-sensitive mutants unable to complete the cell cycle. Classical genetic analysis of these mutants has been used to identify over 40 gene functions that are required for cell cycle progress in S. pombe. Many of these genes have now been cloned and sequenced and in some cases the encoded gene product has been identified. This approach, coupling classical and molecular genetics, allows identification of the molecules important in the mitotic processes and provides a means for establishing what functional roles they may play.  相似文献   

17.
The Saccharomyces cerevisiae morphogenesis checkpoint delays mitosis in response to insults that impair actin organization and/or bud formation. The delay is due to accumulation of the inhibitory kinase Swe1p, which phosphorylates the cyclin-dependent kinase Cdc28p. Having screened through a panel of yeast mutants with defects in cell morphogenesis, we report here that the polarity establishment protein Bem2p is required for the checkpoint response. Bem2p is a Rho-GTPase activating protein (GAP) previously shown to act on Rho1p, and we now show that it also acts on Cdc42p, the GTPase primarily responsible for establishment of cell polarity in yeast. Whereas the morphogenesis role of Bem2p required GAP activity, the checkpoint role of Bem2p did not. Instead, this function required an N-terminal Bem2p domain. Thus, this single protein has a GAP-dependent role in promoting cell polarity and a GAP-independent role in responding to defects in cell polarity by enacting the checkpoint. Surprisingly, Swe1p accumulation occurred normally in bem2 cells, but they were nevertheless unable to promote Cdc28p phosphorylation. Therefore, Bem2p defines a novel pathway in the morphogenesis checkpoint.  相似文献   

18.
Epithelial organs are generated from groups of non-polarized cells by a combination of processes that induce the acquisition of cell polarity, lumen formation, and the subsequent steps required for tubulogenesis. The subcellular mechanisms associated to these processes are still poorly understood. The extracellular environment provides a cue for the initial polarization, while cytoskeletal rearrangements build up the three-dimensional architecture that supports the central lumen. The proper orientation of cell division in the epithelium has been found to be required for the normal formation of the central lumen in epithelial morphogenesis. Moreover, recent data in cellular models and in vivo have shed light into the underlying mechanisms that connect the spindle orientation machinery with cell polarity. In addition, recent work has clarified the core molecular components of the vesicle trafficking machinery in epithelial morphogenesis, including Rab-GTPases and the Exocyst, as well as an increasing list of microtubule-binding and actin-binding proteins and motors, most of which are conserved from yeast to humans. In this review we will focus on the discussion of novel findings that have unveiled important clues for the mechanisms that regulate epithelial tubulogenesis.  相似文献   

19.
BACKGROUND: Polarity establishment and maintenance are crucial for morphogenesis and development. In budding yeast, these two intricate processes involve the superposition of regulatory loops between polarity landmarks, RHO GTPases, actin-mediated vesicles transport and endocytosis. Deciphering the chronology and the significance of each molecular step of polarized growth is therefore very challenging. PRINCIPAL FINDINGS: We have taken advantage of the fact that yeast quiescent cells display actin bodies, a non polarized actin structure, to evaluate the role of F-actin in bud emergence. Here we show that upon exit from quiescence, actin cables are not required for the first steps of polarized growth. We further show that polarized growth can occur in the absence of actin patch-mediated endocytosis. We finally establish, using latrunculin-A, that the first steps of polarized growth do not require any F-actin containing structures. Yet, these structures are required for the formation of a bona fide daughter cell and cell cycle completion. We propose that upon exit from quiescence in the absence of F-actin, secretory vesicles randomly reach the plasma membrane but preferentially dock and fuse where polarity cues are localized, this being sufficient to trigger polarized growth.  相似文献   

20.
The Drosophila salivary gland has emerged as an outstanding model system for the process of organ formation. Many of the component steps, from initial regional specification through cell specialization and morphogenesis, are known and many of the genes required for these different processes have been identified. The salivary gland is a relatively simple organ; the entire gland comprises of only two major cell types, which derive from a single contiguous primordium. Salivary cells cease dividing once they are specified, and organ growth is achieved simply by an increase in size of individual cells, thus eliminating concerns about the potential unequal distribution of determinants during mitosis. Drosophila salivary glands form by the same cellular mechanisms as organs in higher organisms, including regulated cell shape changes, cell intercalation and directed cell migration. Thus, learning how these events are coordinated for tissue morphogenesis in an organism for which the genetic and molecular tools are unsurpassed should provide excellent paradigms for dissecting related processes in the more intricate organs of more complicated species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号