首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interleukin-1 (IL-1) is one of the most potent bone-resorbing factors involved in bone loss associated with inflammation. We previously reported that IL-1 prolonged the survival of multinucleated osteoclast-like cells (OCLs) formed in cocultures of murine osteoblasts/stromal cells and bone marrow cells via the prevention of spontaneously occurring apoptosis. It was reported that macrophage colony-stimulating factor (M-CSF/CSF-1) prolongs the survival of OCLs without the help of osteoblasts/stromal cells. The present study was conducted to determine whether IL-1 also directly induces the multinucleation and activation of OCLs. Mononuclear osteoclast-like cells (prefusion osteoclasts; pOCs) were purified using the "disintegrin" echistatin from cocultures of murine osteoblastic cells (MB 1.8 cells) and bone marrow cells. Both IL-1 and M-CSF prolonged the survival and induced the multinucleation of pOCs through their respective receptors. However, actin ring formation (a functional marker of osteoclasts) by multinucleated cells was observed in the pOC cultures treated with IL-1, but not those treated with M-CSF. We previously reported that enriched multinucleated OCLs as well as pOCs placed on bone/dentine slices formed few resorption pits, but their pit-forming activity was greatly increased by the addition of osteoblasts/stromal cells. Here, pit-forming activity of both pOCs and enriched OCLs placed on dentine slices was induced by adding IL-1, even in the absence of osteoblasts/stromal cells. M-CSF failed to induce pit-forming activity in pOC and enriched OCL cultures. These results indicate that IL-1 induces the multinucleation and bone-resorbing activity of osteoclasts even in the absence of osteoblasts/stromal cells.  相似文献   

2.
Type 1 phosphotidylinosotol-4 phosphate 5 kinase γ (PIP5KIγ) is central to generation of phosphotidylinosotol (4,5)P2 (PI(4,5)P2). PIP5KIγ also participates in cytoskeletal organization by delivering talin to integrins, thereby enhancing their ligand binding capacity. As the cytoskeleton is pivotal to osteoclast function, we hypothesized that absence of PIP5KIγ would compromise their resorptive capacity. Absence of the kinase diminishes PI(4,5) abundance and desensitizes precursors to RANK ligand-stimulated differentiation. Thus, PIP5KIγ−/− osteoclasts are reduced in number in vitro and confirm physiological relevance in vivo. Despite reduced numbers, PIP5KIγ−/− osteoclasts surprisingly have normal cytoskeletons and effectively resorb bone. PIP5KIγ overexpression, which increases PI(4,5)P2, also delays osteoclast differentiation and reduces cell number but in contrast to cells lacking the kinase, its excess disrupts the cytoskeleton. The cytoskeleton-disruptive effects of excess PIP5KIγ reflect its kinase activity and are independent of talin recognition. The combined arrested differentiation and disorganized cytoskeleton of PIP5KIγ-transduced osteoclasts compromises bone resorption. Thus, optimal PIP5KIγ and PI(4,5)P2 expression, by osteoclasts, are essential for skeletal homeostasis.  相似文献   

3.
Although glucocorticoids (GCs) are physiologically essentialfor bone metabolism, it is generally accepted that high dosesof GCs cause bone loss through a combination of decreased boneformation and increased bone resorption. However, the actionof GCs on mature osteoclasts remains contradictory. In thisstudy, we have examined the effect of GCs on osteoclasticbone-resorbing activity and osteoclast apoptosis, by using twodifferent cell types, rabbit unfractionated bone cells andhighly enriched mature osteoclasts (>95% of purity).Dexamethasone (Dex, 10-10–10-7 M) inhibited resorption pit formation on a dentine slice by the unfractionated bone cells in a dose- and time-dependent manner.However, Dex had no effect on the bone-resorbing activity of the isolated mature osteoclasts. When the isolated osteoclastswere co-cultured with rabbit osteoblastic cells, the osteoclastic bone resorption decreased in response to Dex,dependent on the number of osteoblastic cells. Like the effecton the bone resorption, Dex induced osteoclast apoptosis in cultures of the unfractionated bone cells, whereas it did not promote the apoptosis of the isolated osteoclasts. An inhibitorof caspases, Z-Asp-CH2-DCB attenuated both the inhibitory effecton osteoclastic bone resorption and the stimulatory effect onthe osteoclast apoptosis. In addition, the osteoblastic cellswere required for the osteoclast apoptosis induced by Dex. These findings indicate that the main target cells of GCs arenon-osteoclastic cells such as osteoblasts and that GCsindirectly inhibit bone resorption by inducing apoptosis ofthe mature osteoclasts through the action of non-osteoclasticcells. This study expands our knowledge about the multifunctional roles of GCs in bone metabolism.  相似文献   

4.
Connexin (Cx) proteins are essential for cell differentiation, function, and survival in all tissues with Cx43 being the most studied in bone. We now report that Cx37, another member of the connexin family of proteins, is expressed in osteoclasts, osteoblasts, and osteocytes. Mice with global deletion of Cx37 (Cx37−/−) exhibit higher bone mineral density, cancellous bone volume, and mechanical strength compared with wild type littermates. Osteoclast number and surface are significantly lower in bone of Cx37−/− mice. In contrast, osteoblast number and surface and bone formation rate in bones from Cx37−/− mice are unchanged. Moreover, markers of osteoblast activity ex vivo and in vivo are similar to those of Cx37+/+ littermates. sRANKL/M-CSF treatment of nonadherent Cx37−/− bone marrow cells rendered a 5-fold lower level of osteoclast differentiation compared with Cx37+/+ cell cultures. Further, Cx37−/− osteoclasts are smaller and have fewer nuclei per cell. Expression of RANK, TRAP, cathepsin K, calcitonin receptor, matrix metalloproteinase 9, NFATc1, DC-STAMP, ATP6v0d1, and CD44, markers of osteoclast number, fusion, or activity, is lower in Cx37−/− osteoclasts compared with controls. In addition, nonadherent bone marrow cells from Cx37−/− mice exhibit higher levels of markers for osteoclast precursors, suggesting altered osteoclast differentiation. The reduction of osteoclast differentiation is associated with activation of Notch signaling. We conclude that Cx37 is required for osteoclast differentiation and fusion, and its absence leads to arrested osteoclast maturation and high bone mass in mice. These findings demonstrate a previously unrecognized role of Cx37 in bone homeostasis that is not compensated for by Cx43 in vivo.  相似文献   

5.
Osteoclastic bone resorption depends upon the cell''s ability to organize its cytoskeleton. Because vinculin (VCL) is an actin-binding protein, we asked whether it participates in skeletal degradation. Thus, we mated VCLfl/fl mice with those expressing cathepsin K-Cre (CtsK-VCL) to delete the gene in mature osteoclasts or lysozyme M-Cre (LysM-VCL) to target all osteoclast lineage cells. VCL-deficient osteoclasts differentiate normally but, reflecting cytoskeletal disorganization, form small actin rings and fail to effectively resorb bone. In keeping with inhibited resorptive function, CtsK-VCL and LysM-VCL mice exhibit a doubling of bone mass. Despite cytoskeletal disorganization, the capacity of VCL−/− osteoclastic cells to normally phosphorylate c-Src in response to αvβ3 integrin ligand is intact. Thus, integrin-activated signals are unrelated to the means by which VCL organizes the osteoclast cytoskeleton. WT VCL completely rescues actin ring formation and bone resorption, as does VCLP878A, which is incapable of interacting with Arp2/3. As expected, deletion of the VCL tail domain (VCL1–880), which binds actin, does not normalize VCL−/− osteoclasts. The same is true regarding VCLI997A, which also prevents VCL/actin binding, and VCLA50I and VCL811–1066, both of which arrest talin association. Thus, VCL binding talin, but not Arp2/3, is critical for osteoclast function, and its selective inhibition retards physiological bone loss.  相似文献   

6.
Carbonic anhydrase II (CA II), an enzyme catalyzing the interconversion of CO2 and water to HCO 3 ? and protons, has a key role in osteoclastic bone resorption, but little is known of the regulation of CA II gene expression by calcitonin. Analysis of mRNA in osteoclasts has been difficult because of the problems of obtaining sufficient number of purified osteoclasts from bone. In this study, however, we have investigated the regulation of CA II mRNA in rat osteoclasts and their putative mononuclear precursors by using in situ hybridization. We have found that the CA II gene is expressed at high levels in osteoclasts and what are probably their maturing mononuclear precursors. Measurement of CA II mRNA in cultured osteoclasts and their putative mononuclear precursor cells by cytophotometry provided evidence that calcitonin, a direct inhibitor of mammalian osteoclast activity, reduces the levels of CA II mRNA in a dose dependent manner; maximum reduction was observed at a concentration of 100pM of calcitonin. In addition, calcitonin reduced the number of CA II mRNA-positive mononuclear precursor cells. The results also suggest that expression of the CA II gene is a feature of cells committed to the osteoclast lineage.  相似文献   

7.
Lysophosphatidic acid (LPA) is a natural bioactive lipid that acts through six different G protein-coupled receptors (LPA1–6) with pleiotropic activities on multiple cell types. We have previously demonstrated that LPA is necessary for successful in vitro osteoclastogenesis of bone marrow cells. Bone cells controlling bone remodeling (i.e. osteoblasts, osteoclasts, and osteocytes) express LPA1, but delineating the role of this receptor in bone remodeling is still pending. Despite Lpar1−/− mice displaying a low bone mass phenotype, we demonstrated that bone marrow cell-induced osteoclastogenesis was reduced in Lpar1−/− mice but not in Lpar2−/− and Lpar3−/− animals. Expression of LPA1 was up-regulated during osteoclastogenesis, and LPA1 antagonists (Ki16425, Debio0719, and VPC12249) inhibited osteoclast differentiation. Blocking LPA1 activity with Ki16425 inhibited expression of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) and dendritic cell-specific transmembrane protein and interfered with the fusion but not the proliferation of osteoclast precursors. Similar to wild type osteoclasts treated with Ki16425, mature Lpar1−/− osteoclasts had reduced podosome belt and sealing zone resulting in reduced mineralized matrix resorption. Additionally, LPA1 expression markedly increased in the bone of ovariectomized mice, which was blocked by bisphosphonate treatment. Conversely, systemic treatment with Debio0719 prevented ovariectomy-induced cancellous bone loss. Moreover, intravital multiphoton microscopy revealed that Debio0719 reduced the retention of CX3CR1-EGFP+ osteoclast precursors in bone by increasing their mobility in the bone marrow cavity. Overall, our results demonstrate that LPA1 is essential for in vitro and in vivo osteoclast activities. Therefore, LPA1 emerges as a new target for the treatment of diseases associated with excess bone loss.  相似文献   

8.
Fusion and activation of osteoclasts are the final two events in osteoclastic bone resorption. To investigate the regulatory mechanism of these events, mononuclear osteoclasts (preosteoclasts, pOCs) were isolated from co-cultures of mouse osteoblastic cells and bone marrow cells. Most of the pOCs cultured without any additives died within 12 h. Survival of pOCs was supported by addition of either osteoblastic cells or macrophage-colony-stimulating factor (M-CSF). pOCs began to fuse with each other after culture for 12 h in the presence of osteoblastic cells or M-CSF. However, the properties of multinucleated osteoclast-like cells (OCLs) induced by osteoblastic cells were considerably different from those induced by M-CSF. Fusion of pOCs induced by osteoblastic cells was retarded after culture for 24 h. In contrast, M-CSF-induced fusion of pOCs continued throughout the 48-h culture period, which was not inhibited by addition of calcitonin. When pOCs together with osteoblastic cells were cultured for 48 h on dentine slices, many resorption pits were formed on the slices. Calcitonin completely inhibited the fusion and pit-forming activity of pOCs treated with osteoblastic cells. Resorption pits were hardly detected on dentine slices in pOC cultures treated with M-CSF. Osteoblastic cells prepared from osteopetrotic (op/op) mice, which cannot produce functional M-CSF, stimulated the fusion and pit-forming activity of pOCs. Recombinant RANKL (receptor activator of NF-kappaB ligand), a cytokine which is produced by osteoblastic cells and is responsible for osteoclast differentiation, induced the fusion and pit-forming activity of pOCs. These results suggested that osteoblastic cells are involved in fusion and activation of osteoclasts through a mechanism independent of M-CSF production. RANKL appears to be responsible for fusion and activation of osteoclasts induced by osteoblastic cells.  相似文献   

9.
To determine talin1''s role in osteoclasts, we mated TLN1fl/fl mice with those expressing cathepsin K-Cre (CtsK-TLN1) to delete the gene in mature osteoclasts or with lysozyme M-Cre (LysM-TLN1) mice to delete TLN1 in all osteoclast lineage cells. Absence of TLN1 impairs macrophage colony-stimulating factor (M-CSF)-stimulated inside-out integrin activation and cytoskeleton organization in mature osteoclasts. Talin1-deficient precursors normally express osteoclast differentiation markers when exposed to M-CSF and receptor activator of nuclear factor κB (RANK) ligand but attach to substrate and migrate poorly, arresting their development into mature resorptive cells. In keeping with inhibited resorption, CtsK-TLN1 mice exhibit an ∼5-fold increase in bone mass. Osteoclast-specific deletion of Rap1 (CtsK-Rap1), which promotes talin/β integrin recognition, yields similar osteopetrotic mice. The fact that the osteopetrosis of CtsK-TLN1 and CtsK-Rap1 mice is substantially more severe than that of those lacking αvβ3 is likely due to added failed activation of β1 integrins. In keeping with osteoclast dysfunction, mice in whom talin is deleted late in the course of osteoclastogenesis are substantially protected from ovariectomy-induced osteoporosis and the periarticular osteolysis attending inflammatory arthritis. Thus, talin1 and Rap1 are critical for resorptive function, and their selective inhibition in mature osteoclasts retards pathological bone loss.  相似文献   

10.
11.
In this study, we establish that the tyrosine kinase Syk is essential for osteoclast function in vitro and in vivo. Syk−/− osteoclasts fail to organize their cytoskeleton, and, as such, their bone-resorptive capacity is arrested. This defect results in increased skeletal mass in Syk−/− embryos and dampened basal and stimulated bone resorption in chimeric mice whose osteoclasts lack the kinase. The skeletal impact of Syk deficiency reflects diminished activity of the mature osteoclast and not impaired differentiation. Syk regulates bone resorption by its inclusion with the αvβ3 integrin and c-Src in a signaling complex, which is generated only when αvβ3 is activated. Upon integrin occupancy, c-Src phosphorylates Syk. αvβ3-induced phosphorylation of Syk and the latter's capacity to associate with c-Src is mediated by the immunoreceptor tyrosine-based activation motif (ITAM) proteins Dap12 and FcRγ. Thus, in conjunction with ITAM-bearing proteins, Syk, c-Src, and αvβ3 represent an essential signaling complex in the bone-resorbing osteoclast, and, therefore, each is a candidate therapeutic target.  相似文献   

12.
Osteoclast activation involves attachment to the mineralized bone matrix and reorganization of the cytoskeleton, leading to polarization of the cell. Signaling molecules, PI3-kinase, rho A, and pp60c-src, were shown to be essential for osteoclastic bone resorption. In this study we have focused on the involvement of these signaling molecules in the early event of osteoclast activation: attachment, spreading, and organization of the cytoskeleton. Highly purified osteoclasts were fractionated into Triton X-100-soluble or cytosolic and Triton X-100-insoluble or cytoskeletal fractions, and the distribution of above-mentioned signaling molecules between the two fractions was examined. PI3-kinase, rho A, and pp60c-srcall showed translocation to the cytoskeletal fraction upon osteoclast attachment to plastic. However, PI3-kinase and rho A, but not pp60c-src, showed further translocation of 2.4- and 3.2-fold, respectively, upon attachment of osteoclasts to bone. PI3-kinase translocation to the cytoskeleton was inhibited by either cytochalasin B or colchicine. Furthermore, treatment of osteoclasts with the PI3-kinase inhibitor wortmannin decreased its translocation, suggesting that PI3-kinase activity was needed for its translocation. Moreover, wortmannin inhibited osteoclast attachment to both bone and plastic and caused drastic changes in osteoclast morphology resulting in rounding of the cells, disappearance of F-actin structures or podosomes, and appearance of punctate or vesicular structures inside the cells. Osteoblastic MB1.8 cells and IC-21 macrophages did not show additional translocation of PI3-kinase or rho A upon attachment to bone or changes in attachment or morphology in response to wortmannin. Finally, PI3-kinase coimmunoprecipitated with αvβ3integrin from osteoclasts.  相似文献   

13.
Echistatin is a potent inhibitor of bone resorption in culture   总被引:13,自引:1,他引:12       下载免费PDF全文
The venom protein, s-echistatin, originally derived from the saw-scaled viper Echis carinatus, was found to be a potent inhibitor of bone resorption by isolated osteoclasts. This Arg24-Gly25-Asp26-(RGD)-containing protein inhibited the excavation of bone slices by rat osteoclasts (IC50 = 0.1 nM). It also inhibited the release of [3H]proline from labeled bone particles by chicken osteoclasts (IC50 = 100 nM). By comparison, the tetrapeptide Arg-Gly-Asp-Ser (RGDS) inhibited resorption by rat or chicken osteoclasts with an IC50 of 0.1 mM while ala24-echistatin was inactive. Video microscopy showed that rat osteoclast attachment to substrate was more sensitive to s-echistatin than was the attachment of mononuclear cells or chicken osteoclasts. The difference in sensitivity of rat and chicken osteoclasts to s-echistatin may be due to differences between receptors on rat and chicken osteoclasts for s-echistatin. Antibody localization of echistatin on these cells showed much greater echistatin binding to rat osteoclasts than to chicken osteoclasts. Laser scanning confocal microscopy after immunohistochemical staining showed that s-echistatin binds to osteoclasts, that s-echistatin receptors are most abundant at the osteoclast/glass interface, and that s-echistatin colocalizes with vinculin. Confocal interference reflection microscopy of osteoclasts incubated with s-echistatin, demonstrated colocalization of s-echistatin with the outer edges of clusters of grey contacts at the tips of some lamellipodia. Identification of the echistatin receptor as an integrin was confirmed by colocalization of echistatin fluorescence with staining for an alpha-like subunit. Attachment of bone particles labeled with [3H]proline to chicken osteoclasts confirmed that the mechanism of action of echistatin was to inhibit osteoclast binding to bone presumably by disrupting adhesion structures. These data demonstrate that osteoclasts bind to bone via an RGD-sequence as an obligatory step in bone resorption, that this RGD-binding integrin is at adhesion structures, and that it colocalizes with vinculin and has an alpha-like subunit.  相似文献   

14.
Here, we investigated whether the cell surface glycoprotein CD47 was required for normal formation of osteoblasts and osteoclasts and to maintain normal bone formation activity in vitro and in vivo. In parathyroid hormone or 1α,25(OH)2-vitamin D3 (D3)-stimulated bone marrow cultures (BMC) from CD47−/− mice, we found a strongly reduced formation of multinuclear tartrate-resistant acid phosphatase (TRAP)+ osteoclasts, associated with reduced expression of osteoclastogenic genes (nfatc1, Oscar, Trap/Acp, ctr, catK, and dc-stamp). The production of M-CSF and RANKL (receptor activator of nuclear factor κβ ligand) was reduced in CD47−/− BMC, as compared with CD47+/+ BMC. The stromal cell phenotype in CD47−/− BMC involved a blunted expression of the osteoblast-associated genes osterix, Alp/Akp1, and α-1-collagen, and reduced mineral deposition, as compared with that in CD47+/+ BMC. CD47 is a ligand for SIRPα (signal regulatory protein α), which showed strongly reduced tyrosine phosphorylation in CD47−/− bone marrow stromal cells. In addition, stromal cells lacking the signaling SIRPα cytoplasmic domain also had a defect in osteogenic differentiation, and both CD47−/− and non-signaling SIRPα mutant stromal cells showed a markedly reduced ability to support osteoclastogenesis in wild-type bone marrow macrophages, demonstrating that CD47-induced SIRPα signaling is critical for stromal cell support of osteoclast formation. In vivo, femoral bones of 18- or 28-week-old CD47−/− mice showed significantly reduced osteoclast and osteoblast numbers and exhibited an osteopenic bone phenotype. In conclusion, lack of CD47 strongly impairs SIRPα-dependent osteoblast differentiation, deteriorate bone formation, and cause reduced formation of osteoclasts.  相似文献   

15.
Osteoblasts not only control bone formation but also support osteoclast differentiation. Here we show the involvement of Kruppel-like factor 4 (KLF4) in the differentiation of osteoclasts and osteoblasts. KLF4 was down-regulated by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) in osteoblasts. Overexpression of KLF4 in osteoblasts attenuated 1,25(OH)2D3-induced osteoclast differentiation in co-culture of mouse bone marrow cells and osteoblasts through the down-regulation of receptor activator of nuclear factor κB ligand (RANKL) expression. Direct binding of KLF4 to the RANKL promoter repressed 1,25(OH)2D3-induced RANKL expression by preventing vitamin D receptor from binding to the RANKL promoter region. In contrast, ectopic overexpression of KLF4 in osteoblasts attenuated osteoblast differentiation and mineralization. KLF4 interacted directly with Runx2 and inhibited the expression of its target genes. Moreover, mice with conditional knockout of KLF4 in osteoblasts showed markedly increased bone mass caused by enhanced bone formation despite increased osteoclast activity. Thus, our data suggest that KLF4 controls bone homeostasis by negatively regulating both osteoclast and osteoblast differentiation.  相似文献   

16.
YJ Kuo  FY Tsuang  JS Sun  CH Lin  CH Chen  JY Li  YC Huang  WY Chen  CB Yeh  JF Shyu 《PloS one》2012,7(7):e40272

Introduction

Treatment for osteoporosis commonly includes the use of bisphosphonates. Serious side effects of these drugs are caused by the inhibition of bone resorption as a result of osteoclast apoptosis. Treatment using calcitonin along with bisphosphonates overcomes these side-effects in some patients. Calcitonin is known to inhibit bone resorption without reducing the number of osteoclasts and is thought to prolong osteoclast survival through the inhibition of apoptosis. Further understanding of how calcitonin inhibits apoptosis could prove useful to the development of alternative treatment regimens for osteoporosis. This study aimed to analyze the mechanism by which calcitonin influences osteoclast apoptosis induced by a bisphosphate analog, sintered dicalcium pyrophosphate (SDCP), and to determine the effects of co-treatment with calcitonin and SDCP on apoptotic signaling in osteoclasts.

Methods

Isolated osteoclasts were treated with CT, SDCP or both for 48 h. Osteoclast apoptosis assays, pit formation assays, and tartrate-resistant acid phosphatase (TRAP) staining were performed. Using an osteoporosis rat model, ovariectomized (OVX) rats received calcitonin, SDCP, or calcitonin + SDCP. The microarchitecture of the fifth lumbar trabecular bone was investigated, and histomorphometric and biochemical analyses were performed.

Results

Calcitonin inhibited SDCP-induced apoptosis in primary osteoclast cultures, increased Bcl-2 and Erk activity, and decreased Mcl-1 activity. Calcitonin prevented decreased osteoclast survival but not resorption induced by SDCP. Histomorphometric analysis of the tibia revealed increased bone formation, and microcomputed tomography of the fifth lumbar vertebrate showed an additive effect of calcitonin and SDCP on bone volume. Finally, analysis of the serum bone markers CTX-I and P1NP suggests that the increased bone volume induced by co-treatment with calcitonin and SDCP may be due to decreased bone resorption and increased bone formation.

Conclusions

Calcitonin reduces SDCP-induced osteoclast apoptosis and increases its efficacy in an in vivo model of osteoporosis.  相似文献   

17.
In vitro, ligand occupancy of αvβ3 integrin induces phosphorylation of Dap12, which is essential for osteoclast function. Like mice deleted of only αvβ3, Dap12−/− mice exhibited a slight increase in bone mass, but Dap12−/− mice, lacking another ITAM protein, FcRγ, were severely osteopetrotic. The mechanism by which FcRγ compensates for Dap12 deficiency is unknown. We find that co-deletion of FcRγ did not exacerbate the skeletal phenotype of β3−/− mice. In contrast, β3/Dap12 double-deficient (DAP/β3−/−) mice (but not β1/Dap12 double-deficient mice) were profoundly osteopetrotic, reflecting severe osteoclast dysfunction relative to those lacking αvβ3 or Dap12 alone. Activation of OSCAR, the FcRγ co-receptor, rescued Dap12−/− but not DAP/β3−/−osteoclasts. Thus, the absence of αvβ3 precluded compensation for Dap12 deficiency by FcRγ. In keeping with this, Syk phosphorylation did not occur in OSCAR-activated DAP/β3−/− osteoclasts. Thus, FcRγ requires the osteoclast αvβ3 integrin to normalize the Dap12-deficient skeleton.  相似文献   

18.
19.
We report the effects of pulsed electromagnetic fields (PEMFs) on the responsiveness of osteoclasts to cellular, hormonal, and ionic signals. Osteoclasts isolated from neonatal rat long bones were dispersed onto either slices of devitalised cortical bone (for the measurement of resorptive activity) or glass coverslips (for the determination of the cytosolic free Ca2+ concentration, [Ca2+]). Osteoclasts were also cocultured on bone with osteoblastlike, UMR-106 cells. Bone resorption was quantitated by scanning electron microscopy and computer-assisted morphometry. PEMF application to osteoblast–osteoclast cocultures for 18 hr resulted in a twofold stimulation of bone resorption. In contrast, resorption by isolated osteoclasts remained unchanged in the presence of PEMFs, suggesting that osteoblasts were necessary for the PEMF-induced resorption simulation seen in osteoblast–osteoclast cocultures. Furthermore, the potent inhibitory action of the hormone calcitonin on bone resorption was unaffected by PEMF application. However, PEMFs completely reversed another quite distinct action of calcitonin on the osteoclast: its potent inhibitory effect on the activation of the divalent cation-sensing (or Ca2+) receptor. For these experiments, we made fura 2-based measurements of cytosolic [Ca2+] in single osteoclasts in response to the application of a known Ca2+ receptor agonist, Ni2+. We first confirmed that activation of the osteoclast Ca2+ receptor by Ni2+ (5 mM) resulted in a characteristic monophasic elevation of cytosolic [Ca2+]. As shown previously, this response was attenuated strongly by calcitonin at concentrations between 0.03 and 3 nM but remained intact in response to PEMFs. PEMF application, however, prevented the inhibitory effect of calcitonin on Ni2+-induced cytosolic Ca2+ elevation. This suggested that the fields disrupted the interaction between the calcitonin and Ca2+ receptor systems. In conclusion, we have shown that electromagnetic fields stimulate bone resorption through an action on the osteoblast and, by abolishing the inhibitory effects of calcitonin, also restore the responsiveness of osteoclasts to divalent cations. J. Cell. Physiol. 176:537–544, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
The ultrastructure of osteoclasts was examined in fetal rat bones after stimulation or inhibition of resorption in culture. A central ruffled border area completely encircled by a clear zone was considered to represent the resorbing system of the cell. The proportion of ruffled border and clear zone in osteoclast cross sections was compared with changes in bone resorption as measured by the release of previously incorporated radioactive calcium (45Ca). In control cultures 55% of the osteoclast cross sections showed an area closely apposed to bone and this consisted mainly of clear zone; only 11% showed ruffled borders. Treatment with parathyroid hormone (PTH) increased 45Ca release, increased the frequency of finding areas closely apposed to bone (79%), and markedly increased the frequency of the ruffled border area (64%). Colchicine given concurrently with PTH decreased the number of osteoclasts. Colchicine or calcitonin treatment after PTH stimulation decreased the proportion of ruffled border area significantly by 1 h; this was followed by a decrease in 45Ca release. These inhibited osteoclasts resembled osteoclasts from control, unstimulated cultures, suggesting that the cells had returned to their inactive state. Colchicine-treated osteoclasts also showed a loss of microtubules and a massive accumulation of 100 Å filaments, suggesting that synthesis of microtubular subunits had increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号