首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bae EK  Lee H  Lee JS  Noh EW 《Gene》2011,483(1-2):43-48
Water uptake across cell membranes is a principal requirement for plant growth at both the cellular and whole-plant levels; water movement through plant membranes is regulated by aquaporins (AQPs) or major intrinsic proteins (MIPs). We examined the expression characteristics of the poplar plasma membrane intrinsic protein 1 gene (PatPIP1), a type of MIP, which was isolated from a suspension cell cDNA library of Populus alba×P. tremula var. glandulosa. Examination of protoplasts expressing the p35S-PatPIP1::sGFP fusion protein revealed that the protein was localized in the plasma membrane. Northern blot analysis revealed that the gene was strongly expressed in poplar roots and leaves. Gene expression was inducible by abiotic factors including drought, salinity, cold temperatures and wounding, and also by plant hormones including gibberellic acid, jasmonic acid and salicylic acid. Since we found that the PatPIP1 gene was strongly expressed in response to mannitol, NaCl, jasmonic acid and wounding, we propose that PatPIP1 plays an essential role in the defense of plants against water stress.  相似文献   

2.
3.
Changes in LT50 and carbohydrate levels in response to cold acclimation were monitored in vitro and in vivo in red raspberry ( Rubus idaeus L.) cultivars with different levels of cold hardiness. Entire micropropagated plantlets or shoot tips from 3 cultivars were harvested before, during and after cold acclimation. Cane samples from container-grown plants of 4 cultivars were harvested before and during cold acclimation and deacclimation. Samples were evaluated for cold hardiness (LT50) by controlled freezing, then analyzed for carbohydrates, including starch, sucrose, glucose, fructose and raffinose. Hardiness of cold-acclimated 'Muskoka' and 'Festival' was superior to that of 'Titan' or 'Willamette'. In vitro plantlets had higher levels of soluble carbohydrates on a dry weight basis and higher ratios of sucrose:(glucose+fructose) than the container-grown plants. Total soluble carbohydrates, primarily sucrose, accumulated during cold acclimation in both plantlets (33–56% relative increase) and plants (143–191% relative increase). Sucrose increased 124–165% in plantlets and 253–582% in container-grown plants during acclimation and declined rapidly to the level of control plants during deacclimation. Glucose and fructose also accumulated, but to a lesser extent than sucrose. Raffinose concentrations were very low, but increased significantly during cold acclimation. In vitro, genotype hardiness was related to the high concentrations of total soluble carbohydrates, sucrose and raffinose. In vivo, hardier genotypes had lower concentrations of starch than the less hardy genotypes. These results demonstrated the importance of soluble carbohydrates, especially sucrose, in cold hardening of red raspberry and that the in vitro conditions or controlled acclimation conditions do not necessarily reflect the phenomena observed in vivo.  相似文献   

4.
Abstract: The effects of cold acclimation on primary metabolism in actively growing poplar ( Populus tremula L. × P. tremuloides Michaux) were studied. Three-month-old poplar plants were exposed to chilling stress (4 °C) and compared to plant material kept at a control temperature (23 °C). This treatment did not affect the survival of the plants but growth was almost stopped. The freezing tolerance of the adult leaves increased from - 5.7 °C for the control plants to - 9.8 °C after 14 days of exposure to 4 °C. During acclimation, the evolution of soluble carbohydrate contents was followed in the leaves. Sucrose, glucose, fructose and trehalose accumulated rapidly under chilling conditions, while raffinose content increased after one week at 4 °C. Proteomic analyses, by bidimensional electrophoresis, performed during this stage revealed that a large number of proteins had higher expression, while much less proteins disappeared or had a lower abundance. MALDI-TOF-MS analyses enabled ca. 30 spots to be proposed for candidate proteins. Among the accumulating or appearing proteins proposed, about a third presented similarities with chaperone-like proteins (heat shock proteins, chaperonins). In addition, dehydrins and other late embryogenesis abundant proteins, i.e., stress-responsive proteins, detoxifying enzymes, proteins involved in stress signalling and transduction pathways were also activated or newly synthesised. Finally, cold exposure induced a decrease in the candidate proteins involved in cell wall or energy production.  相似文献   

5.
6.
During cold acclimation of potato plantlets ( Solanum commersonii Dun, PI 458317), there are two transitory increases in free ABA content corresponding to a three-fold increase on the 2nd day and a five-fold increase on the 6th day (Ryu and Li 1993). During this period, plantlets increased in cold hardiness from −5°C (killing temperature, control grown at 22/18°C, day/night) to −10°C by the 7th day of exposure to 4/2°C (day/night). This increase in free ABA was not found when cycloheximide (CHI), an inhibitor of cytoplasmic protein synthesis, was added to the culture medium 6 h before exposure to low temperatures. Plantlets treated with CHI did not acclimate to cold, maintaining a hardiness level (−5°C) similar to that of the 22/18°C-grown plantlets. When the CHI-treated plantlets were exposed to low temperatures for 3 days, transferred to CHI-free culture medium and grown at low temperatures, the plantlets showed a transitory increase in free ABA 2 days later. This increase was followed by the development of cold hardiness (−8°C). Application of CHI to the culture medium after 3 days of cold acclimation, when the first ABA peak and a partial development of cold hardiness (−8°C) had occurred, blocked the second transitory increase in free ABA and resulted in no further development of cold hardiness. These results suggest that de novo synthesis of proteins is required for these transitory increases in free ABA during cold acclimation of potato plantlets.  相似文献   

7.
Bark storage proteins accumulate in the bark of many woody plants during autumn and winter. In poplar (Populus deltoides Bartr. ex Marsh), the accumulation of the 32-kilodalton bark storage protein is controlled by photoperiod. We have isolated a full-length cDNA encoding for the poplar 32-kilodalton bark storage protein and determined its nucleotide sequence. The derived amino acid sequence shows that poplar bark storage protein is rich in serine, leucine, phenylalanine, and lysine. Poplar bark storage protein is similar to the poplar wound-induced cDNA clone 4 and clone 16 (TJ Parsons, HD Bradshaw, MP Gordon [1989] Proc Natl Acad Sci USA 86: 7895-7899). DNA gel blot analysis suggests that poplar bark storage protein is encoded by a multigene family of about five genes. Poplar plants grown in long days contained low levels of mRNA for the bark storage protein. Exposure to short days resulted in an increase in bark storage protein mRNA within 7 days. After 21 days of short day exposure, high levels of mRNA were detected. The accumulation of bark storage protein mRNA in response to short days was also observed in plants exposed to natural shortening daylengths. Our results indicate that the accumulation of poplar bark storage protein mRNA is controlled by photoperiod. This finding will provide a useful system for investigating photoperiodism in woody plants.  相似文献   

8.
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression of target mRNAs in plant growth, development, abiotic stress responses, and pathogen responses. Cold stress is one of the most common abiotic factors affecting plants, and it adversely affects plant growth, development, and spatial distribution. To understand the roles of miRNAs under cold stress in Populus tomentosa, we constructed two small RNA libraries from plantlets treated or not with cold conditions (4 °C for 8 h). High-throughput sequencing of the two libraries identified 144 conserved miRNAs belonging to 33 miRNA families and 29 new miRNAs (as well as their corresponding miRNA1s) belonging to 23 miRNA families. Differential expression analysis showed that 21 miRNAs were down-regulated and nine miRNAs were up-regulated in response to cold stress. Among them, 19 cold-responsive miRNAs, two new miRNAs and their corresponding miRNA1s were validated by qRT-PCR. A total of 101 target genes of the new miRNAs were predicted using a bioinformatics approach. These target genes are involved in growth and resistance to various stresses. The results demonstrated that Populus miRNAs play critical roles in the cold stress response.  相似文献   

9.
Cowpea trypsin inhibitor (CpTI) gene, an insecticidal gene, was introduced into poplar ( Populus tomentosa Carr. ) by gene transformation mediated by Agrobacterium tumefac/ens (Smith et Townsend) Conn. The influences on regeneration and transformation frequency of poplar by the concentration and addition of kanamycin were compared. Kanamycin resistant (Kmr) plantlets were obtained by 3 -4 cycles screening in selective condition. The ability of leaf regeneration and shoot subculture and rooting from the transformed and non-transformed plants in the presence of 50 mg/L kanamycin was examined. The presence of CpTI gene in the transgenic plants were confirmed by PCR and PCR-Southern blot. Assay on proteinase inhibition activity demonstrated that leaf protein extracts of the transgenic poplar showed higher inhibition activity against trypsin than that of control plants.  相似文献   

10.
Cold-induced changes in the polysome pattern and protein synthesis were analyzed in winter rye, Secale cereale L. cv. Voima, during one week's cold stress treatment, which was performed by transferring the 7-day-old plants from the greenhouse (25°C, long-day conditions) to 3°C and a photoperiod of 10. 5 h. Freezing resistance determined by electrolyte leakage increased significantly upon cold stress starting from LT50 value –5°C. and reaching –9°C on the day 7 of cold exposure. After 4 weeks at low temperature, plants reached an LT50 of –12°C. The polysome content increased markedly during cold stress compared to the control plants. After 2 weeks of cold treatment the polysome content decreased to the same level as that in control plants. The size-class distribution of polysomes showed a high proportion of large protein synthesizing polysomes in cold-stressed plants. After 2 weeks the values were comparable to those in control plants. Cold-induced proteins were detected using 35S-labelled methionine for in vitro translations. At least 2 new polypeptides, Mr 30000 and 18000, were induced on the first day of cold stress and continued to be expressed at low temperatures 4 weeks later.  相似文献   

11.
12.
Mitogen-activated protein kinase (MAPK) cascades are universal signal transduction modules that play essential roles in plant growth, development and stress response. MAPK kinases (MAPKKs), which link MAPKs and MAPKK kinases (MAPKKKs), are integral in mediating various stress responses in plants. However, to date few data about the roles of poplar MAPKKs in stress signal transduction are available. In this study, we performed a systemic analysis of poplar MAPKK gene family expression profiles in response to several abiotic stresses and stress-associated hormones. Furthermore, Populus trichocarpa MAPKK4 (PtMKK4) was chosen for functional characterization. Transgenic analysis showed that overexpression of the PtMKK4 gene remarkably enhanced drought stress tolerance in the transgenic poplar plants. The PtMKK4-overexpressing plants also exhibited much lower levels of H2O2 and higher antioxidant enzyme activity after exposure to drought stress compared to the wide type lines. Besides, some drought marker genes including PtP5CS, PtSUS3, PtLTP3 and PtDREB8 exhibited higher expression levels in the transgenic lines than in the wide type under drought conditions. This study provided valuable information for understanding the putative functions of poplar MAPKKs involved in important signaling pathways under different stress conditions.  相似文献   

13.
14.
Glutamine synthetase (GS) is the main enzyme involved in ammonia assimilation in plants and is the target of phosphinothricin (PPT), an herbicide commonly used for weed control in agriculture. As a result of the inhibition of GS, PPT also blocks photorespiration, resulting in the depletion of leaf amino acid pools leading to the plant death. Hybrid transgenic poplar (Populus tremula x P. alba INRA clone 7171-B4) overexpressing cytosolic GS is characterized by enhanced vegetative growth [Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M., Kirby, E.G., 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19-26; Fu, J., Sampalo, R., Gallardo, F., Cánovas, F.M., Kirby, E.G., 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26, 411-418; Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Torres de Navarra, A., Cánovas, F.M., 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164, 137-145], increased photosynthetic and photorespiratory capacities [El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., Kirby, E.G., 2004. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 24, 729-736], enhanced tolerance to water stress (El-Khatib et al., 2004), and enhanced nitrogen use efficiency [Man, H.-M., Boriel, R., El-Khatib, R.T., Kirby, E.G., 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167, 31-39]. In vitro plantlets of GS transgenic poplar exhibited enhanced resistance to PPT when compared with non-transgenic controls. After 30 days exposure to PPT at an equivalent dose of 275 g ha(-1), growth of GS transgenic poplar plantlets was 5-fold greater than controls. The response of young leaves to PPT treatment depends on physiological state as indicated by GS and Rubisco (LSU) levels. Young leaves from control plants, typically in a low differentiation state, respond to the herbicide showing up-regulation of GS and LSU. In contrast, young leaves from transgenic lines, with higher initial GS and LSU levels compared to control, display up-regulation of NADP(+)-isocitrate dehydrogenase. Differences between control and GS transgenics in their response to PPT are discussed in relation to their differences in photosynthetic and photorespiratory capacities (El-Khatib et al., 2004).  相似文献   

15.
Physiological and molecular changes in plants grown at low temperatures   总被引:5,自引:0,他引:5  
Theocharis A  Clément C  Barka EA 《Planta》2012,235(6):1091-1105
  相似文献   

16.
The effects of mild osmotic stress conditions on aquaporin-mediated water transport are not well understood. In the present study, mild osmotic stress treatments with 20 and 50 g L?1 polyethylene glycol 6000 (PEG) in Hoagland’s mineral solution were applied for 3 weeks under controlled environmental conditions to transgenic Populus tremula × Populus alba plants constitutively over-expressing a Populus PIP2;5 aquaporin and compared with the wild-type plants. The PEG treatments resulted in growth reductions and triggered changes in net photosynthesis, transpiration, stomatal conductance and root hydraulic conductivity in the wild-type plants. However, height growth, leaf area, gas exchange, and root hydraulic conductivity were less affected by the PEG treatments in PIP2;5-over-expressing poplar lines. These results suggest that water transport across the PIP2;5 aquaporin is an important process contributing to tolerance of mild osmotic stress in poplar. Greater membrane abundance of PIP2;5 was most likely the factor that was responsible for higher root hydraulic conductivity leading to improved plant water flux and, consequently, greater gas exchange and growth rates under mild osmotic stress conditions. The results also provide evidence for the functional significance of PIP2;5 aquaporin in water transport and its strong link to growth processes in poplar.  相似文献   

17.
Abstract: The sensitivity of hybrid poplar (Populus tremula × P. alba) to oxidative stress mediated by paraquat exposure was analysed with leaf discs from wild-type plants and plants expressing the bacterial cDNA of the enzymes of glutathione synthesis, namely gshI, encoding γ-glutamylcysteine synthetase (ECS), or gshII, encoding glutathione synthetase (GS), both in the cytosol. It was expected that leaf discs containing more than 2-fold elevated glutathione concentrations due to over-expression of ECS are less susceptible to paraquat exposure than wild-type plants and transformants over-expressing GS. However, neither over-expression of GS nor of ECS improved paraquat tolerance of the leaves. This result was surprising, because in wild-type plants reduced paraquat sensitivity of young compared with mature leaves coincided with ca. 30 % higher glutathione contents of the young leaves. Apparently, developmental changes in paraquat sensitivity of poplar leaves are controlled by factors different from glutathione contents. Feeding experiments with glutathione and its metabolic precursor γ-glutamylcysteine (EC) plus gly showed that glutathione can provide protection from paraquat-mediated photo-oxidative stress; but at least ca. 5-fold elevated glutathione levels are required for this effect in poplar leaves. Currently, such high glutathione levels have not been achieved by the application of plant molecular biology techniques. The significance of glutathione for the compensation of photo-oxidative stress is discussed.  相似文献   

18.
高山植物绵头雪莲花(Saussurea laniceps HandMazz.)组织培养苗经2℃低温锻炼后抗寒性明显增强,SOD、CAT、POD活性明显提高,可溶性蛋白质、脯氨酸含量升高,而可溶性糖含量没有明显变化.脱锻炼期间可溶性蛋白质含量仍高于低温锻炼期间的水平,脱锻炼后抗氧化酶活性略有上升或保持稳定状态.这些变化是绵头雪莲花组织培养苗适应低温逆境的生理生化基础.  相似文献   

19.
20.
In vitro inoculation of Vitis vinifera L. cv. Chardonnay explants with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN, increased grapevine growth and physiological activity at a low temperature. There was a relationship between endophytic bacterial colonization of the grapevine plantlets and their growth at both ambient (26 degrees C) and low (4 degrees C) temperatures and their sensitivities to chilling. The major benefits of bacterization were observed on root growth (11.8- and 10.7-fold increases at 26 degrees C and 4 degrees C, respectively) and plantlet biomass (6- and 2.2-fold increases at 26 degrees C and 4 degrees C, respectively). The inoculation with PsJN also significantly improved plantlet cold tolerance compared to that of the nonbacterized control. In nonchilled plantlets, bacterization enhanced CO(2) fixation and O(2) evolution 1.3 and 2.2 times, respectively. The nonbacterized controls were more sensitive to exposure to low temperatures than were the bacterized plantlets, as indicated by several measured parameters. Moreover, relative to the noninoculated controls, bacterized plantlets had significantly increased levels of starch, proline, and phenolics. These increases correlated with the enhancement of cold tolerance of the grapevine plantlets. In summary, B. phytofirmans strain PsJN inoculation stimulates grapevine growth and improves its ability to withstand cold stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号