首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With greater acreages being planted to transgenic crops, the exposure of non-target species to bioengineered material is increasing. Although the slug, Deroceras reticulatum (Müller), is a major agricultural pest throughout the world, Bacillus thuringiensis crops were not intended to target these species. Molluscs are readily consumed by many generalist predators; if these Cry1Ab-endotoxins are taken up by slugs during feeding on transgenic plants, predators would therefore be exposed to elevated endotoxin concentrations. Using a biochemical assay, we tested the hypothesis that slugs fed transgenic corn would accumulate detectable quantities of Cry1Ab-endotoxins for prolonged periods of time. Characterization indicated that at low dilution rates, Cry1Ab-endotoxins were detectable in slugs fed Bt-corn but no reactivity was elicited by specimens fed non-transgenic food. It was possible to detect Cry1Ab-endotoxins in slugs for 95.9 h after consumption of Bt-corn. Although quantities were small, these long detection periods indicated potential exposure of generalist predators to low concentrations of transgenic insecticidal toxins in the field.  相似文献   

2.
The planting of transgenic crops expressing Bacillus thuringiensis endotoxins is widespread throughout the world; the prolific increase in their application exposes nontarget organisms to toxins designed to control pests. To date, studies have focused upon the effects of Bt endotoxins on specific herbivores and detritivores, without consideration of their persistence within arthropod food webs. Here, we report the first quantitative field evaluation of levels of Bt endotoxin within nontarget herbivores and the uptake by higher order arthropods. Antibody-based assays indicated significant quantities of detectable Cry1Ab endotoxin within nontarget herbivores which feed on transgenic corn (including the corn flea beetle, Chaetocnema pulicaria, Japanese beetle, Popillia japonica and southern corn rootworm, Diabrotica undecimpunctata howardi). Furthermore, arthropod predators (Coccinellidae, Araneae, and Nabidae) collected from these agroecosystems also contained significant quantities of Cry1Ab endotoxin indicating its movement into higher trophic levels. This uptake by predators is likely to have occurred by direct feeding on plant material (in predators which are facultatively phytophagous) or the consumption of arthropod prey which contained these proteins. These data indicate that long-term exposure to insecticidal toxins occurs in the field. These levels of exposure should therefore be considered during future risk assessments of transgenic crops to nontarget herbivores and arthropod predators.  相似文献   

3.
A major concern regarding the deployment of insect resistant transgenic plants is their potential impact on non-target organisms, in particular on beneficial arthropods such as predators. To assess the risks that transgenic plants pose to predators, various experimental testing systems can be used. When using tritrophic studies, it is important to verify the actual exposure of the predator, i.e., the presence of biologically active toxin in the herbivorous arthropod (prey). We therefore investigated the uptake of Cry1Ab toxin by larvae of the green lacewing (Chrysoperla carnea (Stephens); Neuroptera: Chrysopidae) after consuming two Bt maize-fed herbivores (Tetranychus urticae Koch; Acarina: Tetranychidae and Spodoptera littoralis (Boisduval); Lepidoptera: Noctuidae) by means of an immunological test (ELISA) and the activity of the Cry1Ab toxin following ingestion by the herbivores. Moreover, we compared the activity of Cry1Ab toxin produced by Bt maize to that of purified toxin obtained from transformed Escherichia coli, which is recommended to be used in toxicity studies. The activity of the toxin was assessed by performing feeding bioassays with larvae of the European corn borer (Ostrinia nubilalis (Hübner); Lepidoptera: Crambidae), the target pest of Cry1Ab expressing maize. ELISA confirmed the ingestion of Bt toxin by C. carnea larvae when fed with either of the two prey species and feeding bioassays using the target pest showed that the biological activity of the Cry1Ab toxin is maintained after ingestion by both herbivore species. These findings are discussed in the context of previous risk assessment studies with C. carnea. The purified Cry1Ab protein was more toxic to O. nubilalis compared to the plant-derived Cry1Ab toxin when applied at equal concentrations according to ELISA measurements. Possible reasons for these findings are discussed.  相似文献   

4.
Large quantities of Bacillus thuringiensis (Bt) corn plant residue are left in the field after harvest, which may have implications for the soil ecosystem. Potential impacts on soil organisms will also depend on the persistence of the Bt toxin in plant residues. Therefore, it is important to know how long the toxin persists in plant residues. In two field studies in the temperate corn-growing region of Switzerland we investigated degradation of the Cry1Ab toxin in transgenic Bt corn leaves during autumn, winter and spring using an enzyme-linked immunosorbent assay (ELISA). In the first field trial, representing a tillage system, no degradation of the Cry1Ab toxin was observed during the first month. During the second month, Cry1Ab toxin concentrations decreased to approximately 20% of their initial values. During winter, there was no further degradation. When temperatures again increased in spring, the toxin continued to degrade slowly, but could still be detected in June. In the second field trial, representing a no-tillage system, Cry1Ab toxin concentrations decreased without initial delay as for soil-incorporated Bt plants, to 38% of the initial concentration during the first 40 days. They then continued to decrease until the end of the trial after 200 days in June, when 0.3% of the initial amount of Cry1Ab toxin was detected. Our results suggest that extended pre- and post-commercial monitoring are necessary to assess the long-term impact of Bt toxin in transgenic plant residues on soil organisms.  相似文献   

5.
Exposure of arthropod predators to Cry1Ab toxin in Bt maize fields   总被引:5,自引:0,他引:5  
Abstract.  1. To assess the risks of an insect-resistant transgenic plant for non-target arthropods, it is important to investigate the exposure of non-target species to the transgene product. Exposure of predators in the field depends on the toxin levels in food sources, their feeding ecology and that of their prey.
2. To verify the transmission of Cry1Ab toxin through the food chain, and thus exposure of predators in the field, samples from different plant tissues, herbivores, and predators in Bt maize fields in Spain (Event 176) were collected at different periods over the season and the toxin content was measured using ELISA. Complementary laboratory studies were performed with the omnivorous predator Orius majusculus to assess the toxin uptake and persistence after feeding on variable Bt-containing food sources.
3. Field results revealed that toxin content in some herbivores was negligible (aphids, thrips, leafhoppers) compared with those in spider mites. The latter herbivore only occurred after pollen shed and contained three times greater toxin levels than Bt maize leaves.
4. Data confirmed that the Bt toxin can be transferred to predators, that is to say to Orius spp., Chrysoperla spp., and Stethorus sp. This only applied when Bt maize pollen or spider mites were available. The passage of Bt toxin to O. majusculus via these two food sources was also confirmed in the laboratory. Contrastingly, some predators in the field (hemerobiids, Nabis sp., Hippodamia sp., Demetrias sp.) contained no or negligible toxin levels even when pollen or spider mites were present.
5. Besides essential information for exposure assessment of numerous arthropod predators, this study provides an insight into the feeding ecology of different arthropods in the maize system.  相似文献   

6.
Generalist predators have the capacity to regulate herbivore populations through a variety of mechanisms, but food webs are complex and defining the strength of trophic linkages can be difficult. Molecular gut-content analysis has revolutionized our understanding of these systems. Utilizing this technology, we examined the structure of a soybean food web, identified the potential for adult and immature Orius insidiosus (Hemiptera: Anthocoridae) to suppress Aphis glycines (Hemiptera: Aphididae), and tested the hypotheses that foraging behaviour would vary between life stages, but that both adults and immatures would exert significant predation pressure upon this invasive pest. We also identified the strength of trophic pathways with two additional food items: an alternative prey item, Neohydatothrips variabilis (Thysanoptera: Thripidae), and an intraguild predator, Harmonia axyridis (Coleoptera: Coccinellidae). A. glycines constituted a greater proportion of the diet of immature O. insidiosus, but N. variabilis DNA was found in greater frequency in adults. However, both life stages were important early-season predators of this invasive pest, a phenomenon predicted as having the greatest impact on herbivore population dynamics and establishment success. No adult O. insidiosus screened positive for H. axyridis DNA, but a low proportion (2.5%) of immature individuals contained DNA of this intraguild predator, thus indicating the existence of this trophic pathway, albeit a relatively minor one in the context of biological control. Interestingly, approximately two-thirds of predators contained no detectable prey and fewer than 3% contained more than one prey item, suggesting the possibility for food limitation in the field. This research implicates O. insidiosus as a valuable natural enemy for the suppression of early-season A. glycines populations.  相似文献   

7.
We investigated the effects of transgenic maize (Zea mays) expressing Bacillus thuringienses toxin (Bt maize) on larval and adult Poecilus cupreus carabid beetles in laboratory studies. In no-choice trials, neonate P. cupreus larvae were fed exclusively with Spodoptera littoralis caterpillars, which had been raised on Bt maize. S. littoralis raised on conventional maize or high quality Calliphora sp. pupae were fed to the beetle larvae in two control treatments. Bt-maize-fed caterpillar prey increased mortality to 100 within 40days. The experiment was repeated with 10-day-old beetle larvae. Bt treatment resulted in fewer pupae than in both controls, and in a higher mortality than in the Calliphora control. S. littoralis was suitable as exclusive prey in no-choice tests, at least for 40days, although prey quality seemed to be low compared to Calliphora pupae. The observed effects are most likely indirect effects due to further reduced nutritional prey quality. However, direct effects cannot be excluded. In the second part of the study, exposure of P. cupreus to Bt intoxicated prey was examined in paired-choice tests. Adult beetles were offered a choice between different prey conditions (frozen and thawed, freshly killed or living), prey types (S. littoralis caterpillars, Calliphorasp. pupae, cereal aphids) and prey treatments (raised on Bt or conventional maize). Living prey was preferred to frozen and dead prey. Caterpillars were only preferred to fly pupae and aphids when living. Prey treatment seemed to be least important for prey selection. The tests showed that P. cupreus ingested caterpillars readily and there was no evidence of them avoiding Bt containing prey, which means exposure in the field could occur. The presented protocols are a first step towards ecological risk assessment for carabid beetles.  相似文献   

8.
The effects of repeated annual application of methiocarb-based slug pellets, broadcast on the soil surface and drilled into the seed bed, on carabid beetle activity were investigated over a four year period on a winter-sown cereal field using pitfall traps in barriered plots. Following applications in late autumn all winter-active carabid populations were severely depressed; total carabid activity falling to less than 5% and 10–15% following broadcast and drilled applications, respectively, compared with untreated plots. Spring and summer-active species, not active at the time of application, were largely unaffected by applications and were responsible for a gradual recovery of total activity from early spring onwards. Activity of all affected winter species remained demonstrably depressed on treated areas for the remainder of their seasonal incidence. However, all except one species, Bembidion obtusum, recovered to normal activity levels in the following season prior to reapplication. Recovery patterns are discussed in terms of the known biology of the species involved. Evidence that a minority of summer-active species were also affected by treatments, sometimes positively and sometimes negatively, were attributed to indirect effects possibly involving prey availability and foraging behaviour. The long-term ecological and short-term agronomic implications of methiocarb effects on carabid populations in winter-sown cereals are discussed.  相似文献   

9.
Transgenic Bt maize and Rhopalosiphum padi (Hom., Aphididae) performance   总被引:2,自引:0,他引:2  
Abstract.  1. The population abundance and age structure of Rhopalosiphum padi , one of the most common maize aphid species, on transgenic Bt (expressing the Cry1Ab protein) and non-Bt isogenic maize was studied in commercial plots during three crop seasons.
2. A higher density of aphids, particularly alates and young nymphs, occurred in Bt plots at very young maize development stages, corresponding to the settlement period, in the 3 years studied. Possible causes are discussed. After this period, there were no differences between Bt and non-Bt maize.
3. Mortality, development, and reproduction of the offspring of alate forms of R. padi and the offspring of different generations of apterous forms fed with Bt maize were evaluated in the laboratory under controlled conditions.
4. The developmental and pre-reproductive times of the offspring of the first generation of alatae were shorter and the intrinsic rate of natural increase ( r m ) higher when aphids fed on Bt maize. The opposite occurs with the offspring of the first generation of apterous mothers, which have lower nymphal and adult mortality, shorter developmental and pre-reproductive times, a higher effective fecundity rate, and greater r m , when fed on non-Bt maize. The differences in aphid development on the two cultivars may be linked to changes in host-plant quality due to pleiotropic effects of the genetic modification.
5. No differences on aphid mortality, developmental and pre-reproductive times, fecundity, and r m were found between the offspring of apterous aphids maintained on Bt or non-Bt maize for several generations.  相似文献   

10.
Abstract: Although transgenic Bacillus thuringiensis (Bt) corn can provide a new tool for control of the Asian corn borer (ACB), Ostrinia furnacalis (Guenée), concern has been raised regarding the possibility of the target insect evolving resistance to the Bt protein under intensive selection pressure from Bt corn. Therefore, it is necessary to establish baseline data to enable detection of changes in susceptibility in field populations after prolonged exposure to Bt corn. Susceptibility to purified Cry1Ab protein from Bt was determined for 10 populations of ACB from the major corn‐growing regions of China, ranging geographically from Heilongjiang Province in the northeast to Shaanxi Province in the east‐central part. Neonate ACB were exposed to semi‐artificial diet incorporated with increasing Cry1Ab protein concentrations, and mortality and growth inhibition were evaluated after 7 days. The range of LC50 (50% lethal concentration) among the populations was 0.10 to 0.81 μg/g (Cry1Ab protein/diet). Differences (P < 0.05) in susceptibility among the populations were significant. LC50s generated from the Huanghuaihai Summer Corn Region were higher than those from the Spring Corn Regions. Bt was one of the significant natural biomortality factors of overwintering generation ACB. There was a significant correlation between percentage of the larvae infected with Bt and their LC50 values to Cry1Ab protein in geographic distinct populations (r = 0.7350*, d.f. = 8, r0.05 = 0.632). Based on the background of Bt formulations used for corn insect pests control in these areas, these differences were not caused by prior exposure to Bt insecticides. Instead, the small differences likely reflect natural Bt selection pressure. Because the variation in susceptibility to Cry1Ab was small (<10‐fold), the ACB apparently is susceptible to Cry1Ab across its range within China.  相似文献   

11.
Abstract Maize production in the United States is dominated by plants genetically modified with transgenes from Bacillus thuringiensis (Bt). Cry3Bb delta endotoxins expressed by Bt maize specifically target corn rootworms (genus Diabrotica) and have proven highly efficacious. However, development of resistance to Bt maize, especially among western corn rootworm (Diabrotica virgifera virgifera) populations, poses a significant threat to the future viability of this pest control biotechnology. The structured refuge insect resistance management (IRM) strategy implemented in the United States for Bt maize adopts a conservative approach to managing resistance by assuming no fitness costs of Bt resistance, even though these trade‐offs strongly influence the dynamics of Bt resistance within numerous agricultural pest species. To investigate the effects of Bt resistance on fitness components of western corn rootworm, we compared survivorship, fecundity and viability of five Bt‐resistant laboratory lines reared on MON863 (YieldGard Rootworm), a Bt maize product that expresses Cry3Bb1 delta endotoxin, and on its non‐transgenic isoline. Analysis of performance on the isoline maize demonstrated no fitness costs associated with Bt resistance. In fact, resistant lines emerged approximately 2–3 days earlier than control lines when reared on both MON863 and the isoline, indicating that selection for Bt resistance resulted in a general increase in the rate of larval development. In addition, resistant lines reared on Bt maize displayed higher fecundity than those reared on the isoline, which may have significant management implications. These data will be valuable for formulating improved IRM strategies for a principal agricultural pest of maize.  相似文献   

12.
13.
苏云金芽孢杆菌Cry1A(b)抗虫基因LAMP检测方法的建立与应用   总被引:1,自引:0,他引:1  
以转基因玉米MON810为模板,针对Cry1A(b)抗虫基因核酸保守序列设计特异性引物,建立LAMP检测体系。对该体系的可行性、灵敏性、特异性进行分析,并应用于转基因产品的检测。研究结果显示该方法快速简单、灵敏度特异性高、结果可视化,可应用于转基因产品中Cry1A(b)基因的初步筛选。  相似文献   

14.
The soybean aphid, Aphis glycines (Hemiptera: Aphididae), is a pest of soybeans in Asia, and in recent years has caused extensive damage to soybeans in North America. Within these agroecosystems, generalist predators form an important component of the assemblage of natural enemies, and can exert significant pressure on prey populations. These food webs are complex and molecular gut-content analyses offer nondisruptive approaches for examining trophic linkages in the field. We describe the development of a molecular detection system to examine the feeding behaviour of Orius insidiosus (Hemiptera: Anthocoridae) upon soybean aphids, an alternative prey item, Neohydatothrips variabilis (Thysanoptera: Thripidae), and an intraguild prey species, Harmonia axyridis (Coleoptera: Coccinellidae). Specific primer pairs were designed to target prey and were used to examine key trophic connections within this soybean food web. In total, 32% of O. insidiosus were found to have preyed upon A. glycines, but disproportionately high consumption occurred early in the season, when aphid densities were low. The intensity of early season predation indicates that O. insidiosus are important biological control agents of A. glycines, although data suggest that N. variabilis constitute a significant proportion of the diet of these generalist predators. No Orius were found to contain DNA of H. axyridis, suggesting intraguild predation upon these important late-season predators during 2005 was low. In their entirety, these results implicate O. insidiosus as a valuable natural enemy of A. glycines in this soybean agroecosystem.  相似文献   

15.
In the United States of America, the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is commonly managed with transgenic corn (Zea mays L.) expressing insecticidal proteins from the bacteria Bacillus thuringiensis Berliner (Bt). Colonies of this pest have been selected in the laboratory on each commercially available transformation event and several resistant field populations have also been identified; some field populations are also resistant. In this study, progeny of a western corn rootworm population collected from a Minnesota corn field planted to SmartStax® corn were evaluated for resistance to corn hybrids expressing Cry3Bb1 (event MON88017) or Cry34/35Ab1 (event DAS‐59122‐7) and to the individual constituent proteins in diet‐overlay bioassays. Results from these assays suggest that this population is resistant to Cry3Bb1 and is incompletely resistant to Cry34/35Ab1. In diet toxicity assays, larvae of the Minnesota (MN) population had resistance ratios of 4.71 and >13.22 for Cry34/35Ab1 and Cry3Bb1 proteins, respectively, compared with the control colonies. In all on‐plant assays, the relative survival of the MN population on the DAS‐59122‐7 and MON88017 hybrids was significantly greater than the control colonies. Larvae of the MN population had inhibited development when reared on DAS‐59122‐7 compared with larvae reared on the non‐Bt hybrid, indicating resistance was incomplete. Overall, these results document resistance to Cry3Bb1 and an incomplete resistance to Cry34/35Ab1 in a population of WCR from a SmartStax® performance problem field.  相似文献   

16.
Abstract. The effects of Bacillus thuringiensis (Bt) Cry1C toxin on the metabolic rate of Cry1C resistant and susceptible Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) are investigated using closed‐system respirometry. Mechanisms of resistance to the Bt toxin may be associated with an energetic cost that can be measured as an increase in metabolic rate compared with Bt‐susceptible insects. This hypothesis is tested using third‐ and fifth‐instar larvae and 1–7‐day‐old pupae. Metabolic rate is measured as the amount of O2 consumed and CO2 produced. V?O2 and V?CO2 (mL g?1 h?1) of third‐instar Cry1C resistant larvae reared continuously on a diet containing 320 µg Cry1C toxin per g diet (CryonT) are significantly greater than third‐instar Cry1C resistant larvae reared on toxin for 5 days and reared thereafter on untreated diet (Cry5dT), Cry1C resistant larvae reared on untreated diet (CryReg) and the susceptible parental strain (SeA) reared on untreated diet. There are no differences in V?O2 and V?CO2 (mL g?1 h?1) among treatment groups for fifth‐instar larvae. CryonT larvae and pupae weigh significantly less than larvae and pupae receiving other treatments. Smaller body mass may be an important biological cost to individuals exposed continuously to Bt toxin. One‐day‐old pupae of all treatment groups exhibit a high V?O2 (mean approximately 0.174 mL g?1 h?1) with CryonT having a significantly greater value than all other treatments; there are no differences among the other treatments. Pupal metabolic rates of all treatment groups decline to a minimum between days 2 and 4 then increase linearly between days 4 and 7 until adult emergence. These results demonstrate no difference in metabolic rates, and possibly fitness costs, between resistant (CryReg and Cry5dT) and susceptible (SeA) S. exigua except when larvae were reared continuously on toxin (CryonT).  相似文献   

17.
Enzyme-linked immunosorbent assays (ELISA) and bioassays were used to estimate levels of Cry1Ab protein in four species of phytophagous insects after feeding on transgenic Bt-corn plants expressing Cry1Ab protein or artificial diets containing Cry1Ab protein. The level of Cry1Ab in insects feeding on sources containing the Cry1Ab protein was uniformly low but varied with insect species as well as food source. For the corn leaf aphid, Rhopalosiphum maidis (Fitch), feeding on diet solutions containing Cry1Ab protein, the level of the protein in the aphid was 250–500 times less than the original levels in the diet, whereas no Cry1Ab was detected by ELISA in aphids feeding on transgenic Bt-Corn plants. For the lepidopteran insects, Ostrinia nubilalis (Hübner), Helicoverpa zea (Boddie), and Agrotis ipsilon (Hufnagel), levels of Cry1Ab in larvae varied significantly with feeding treatment. When feeding for 24 h on artificial diets containing 20 and 100 ppm of Cry1Ab, the level of Cry1Ab in the larvae was about 57 and 142 times lower, respectively, than the original protein level in the diet for O. nubilalis, 20 and 34 times lower for H. zea, and 10 to 14 times lower for A. ipsilon. Diet incorporation bioassays with a susceptible insect (first instar O. nubilalis) showed significant Cry1Ab bioactivity present within whole body tissues of R. maidis and O. nubilalis that had fed on diet containing a minimum of 20 ppm or higher concentrations (100 or 200 ppm) of Cry1Ab, but no significant bioactivity within the tissues of these insects after feeding on transgenic Bt-corn plants. The relevance of these findings to secondary exposure risk assessment for transgenic Bt crops is discussed.  相似文献   

18.
Phloem sap of transgenic Bacillus thuringiensis (Bt) corn expressing a truncated form of the B. thuringiensis delta-endotoxin Cry1Ab, sap sucking aphids feeding on Bt corn and their honeydew were analysed for presence of Cry1Ab using ELISA. Phloem sap of Bt and non-Bt corn was collected using a newly developed technique with a microcapillary being directly inserted into the phloem tubes. Using this technique, no Cry1Ab was detected in the phloem sap. In contrast, measurable concentrations of Cry1Ab in the range of 1 ppb were detected when phloem sap of pooled leaf samples was extracted using EDTA buffer. This was probably because of Cry1Ab toxin released from damaged cells. When analysing apterous adults of Rhopalosiphum padi L. and their honeydew, no Cry1Ab could be detected. In contrast, Cry1Ab was clearly detected in both larvae of the leaf chewing herbivore Spodoptera littoralis (Boisduval) and their faeces, showing that Cry1Ab is detectable after ingestion and excretion by herbivores. These results suggest that R. padi ingests or contains no or only very low concentrations of Cry1Ab in the range of the detection limit. In consequence it is hypothesized that R. padi as an important prey for beneficial insects in corn is unlikely to cause any harm to its antagonists due to mediating Bt toxin.  相似文献   

19.
A laboratory study was carried out to assess the potential prey-mediated effects of Cry3Bb1-expressing Bt maize on the fitness and predatory ability of Atheta coriaria Kraatz (Coleoptera: Staphylinidae), using Tetranychus urticae Koch (Acari: Tetranychidae) as prey. The concentration of Cry3Bb1 toxin through the trophic chain significantly decreased from Bt maize (21.7 μg g(-1) FW) to mites (5.6 μg g(-1) FW) and then to A. coriaria adults (1.4 μg g(-1) FW), but not from mites to A. coriaria L1-L3 larvae (4.1-4.6 μg g(-1) FW). Interestingly, the toxin levels detected in A. coriaria larvae represent more than 20% of the concentration found in Bt maize, and the toxin was detected up to 48 h after exposure. To our knowledge, this is the highest level of exposure ever reported in a predatory beetle to the Cry3Bb1 protein. When A. coriaria larvae were reared on Bt-fed mites, Bt-free mites or rearing food, no significant differences among treatments were observed in development, morphological measurements of sclerotized structures and body weight. Moreover, no negative effects on reproductive parameters were reported in adults feeding on Bt-fed prey after 30 days of treatment, and survival was not affected after 60 days of exposure. Similarly, predatory ability and prey consumption of A. coriaria larvae and adults were not affected by exposure to the toxin. All together, these results indicate a lack of adverse effects on A. coriaria, a species commonly used as a biological control agent. The use of A. coriaria as a surrogate species for risk assessment of GM crops that express insecticidal proteins is discussed.  相似文献   

20.
The growth of genetically engineered maize that produces the insecticidal protein Cry3Bb1 from Bacillus thuringiensis ( Bt ) is an effective method to control corn rootworms ( Diabrotica spp.), which are threatening maize production in North America and Europe. In this study, the risk of Cry3Bb1-expressing maize for the predatory spider Theridion impressum , a common species in European maize fields, was assessed. Quantification of Cry3Bb1 in potential prey species collected in Bt maize plots and prey spectrum analysis revealed that T. impressum ingests Cry3Bb1 in the field. Exposure to the Bt protein, however, was highly variable because some potential prey species, such as phloem-feeding herbivores and predators, contained little or no Cry3Bb1, whereas leaf-feeding herbivores contained high concentrations. Adult and juvenile T. impressum spiders were fed with Cry3Bb1-containing food (prey or maize pollen) for 8 weeks in the laboratory to examine the toxicity of the Bt protein. No differences in mortality, weight development or offspring production were observed between spiders provided with food containing or not containing Cry3Bb1. Retrospective power analysis indicated that the bioassays were sufficiently sensitive to detect meaningful differences if present. Although Cry3Bb1 is ingested by the spider in the field, our data provide no evidence for toxicity. Consequently, the growth of corn rootworm-resistant Bt maize appears to pose no risk for T. impressum .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号