首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ants were extracted in Winkler bags from sifted leaf litter sampled in arange of forest and woodland types in and around Mkomazi Game Reserve innorth-eastern Tanzania, including the Eastern Arc Mountains of South Pare andWest Usambara. A total of 87 ant species were recorded, of which 32.2% were onlyrecorded from montane forests (1400–1850 m altitude), 6.9%only from lowland forest (540–810 m), 19.5% only fromwoodland (300–1080 m), and 16.1% in all three forest types.Of the 28 species recorded only from montane forests, 12 species were only foundin the Mkomazi forests, four only in the Pares and seven species only in theUsambaras. Sites of similar altitude grouped together in a cluster analysis, andspecies richness decreased with an increase in altitude. The lowland forest andclosed woodland sites did not form distinct communities. To ensure preservationof ant species, forests from a full range of altitudes need to be conserved.This study confirms the status of the West Usambara forests as having a highlyendemic biota, and the critical need to adequately conserve the remainingvestiges of montane forest within Mkomazi Game Reserve.  相似文献   

2.
Western Amazonia harbours one of the richest palm floras of the Neotropics. About 121 palm species and 33 genera occur in this region. Approximately 40% of these species and three monotypic genera ( Aphandra , Itaya and Wendlandiella ) are restricted to western Amazonia. Bactris (23 spp.), Geonoma (20 spp.), Attalea (17 spp.), Astrocaryum (11 spp.) and Oenocarpus (7 spp.) are the most well-represented genera in the region. Palms, however, are not homogeneously distributed across western Amazonia. A major change in palm composition occurs between Yasuní (eastern Ecuador) and Iquitos (eastern Peru). Species that are very abundant on the unflooded forest of Yasuní, such as Iriartea deltoidea or Prestoea shultzeana , are replaced by Socratea exorrhiza , Lepidocaryum tenue var. tenue or Iriartella stenocarpa in the Iquitos–Pebas region. Moreover, the distribution ranges of the majority of eastern Ecuadorean palms reach the Iquitos region, but the converse is not observed. Censuses of palm communities along transects, studies of microhabitat preferences of Oenocarpus bataua and documentation of the distribution limit of Astrocaryum species in the intermediate zone provide new insights on the floristic change that is occurring. Modern ecological constraints and geological history during the Cenozoic may explain the observed variations.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 151 , 127–140.  相似文献   

3.
This study evaluates biotic responses, using ants as bio-indicators, to relatively recent anthropogenic disturbances to mature forest in central Amazonia. The structure of the ground-foraging ant community was compared in four habitats that represented a gradient of disturbance associated with differences in land use. Ants were collected in undisturbed, mature forest, in an abandoned pasture, in a young regrowth forest (situated in a former pasture area), and in an old regrowth forest (established where mature forest was just cleared and abandoned). More ant species were found in mature and old regrowth forest than in the abandoned pasture. By contrast, ant abundance tended to decrease with forest maturity. Both pasture and young regrowth forest exhibited a distinct ant species composition compared to mature forest, whereas species composition in the old regrowth forest showed greater similarity to that of mature forest. In spite of differences in fallow time between former pasture areas and non-pasture areas, there is evidence that different land-management practices do result in different rates of recovery of the ant forest fauna after land abandonment. In any case, recuperation of the ground-foraging ant fauna appears to be faster than regeneration of the woody-plant community. In this sense, regrowth forests may be valuable for the conservation of ground-foraging ants and perhaps for other components of mature-forest leaf-litter fauna within the context of a fragmented landscape.  相似文献   

4.
5.
6.
7.
In order to observe the effect of forest loss on the leaf litter ant fauna in Ghana, West Africa, samples were taken in primary forest, secondary forest and in cocoa plots. Ants were extracted from the leaf litter by sieving followed by suspension in Winkler bags. The species composition and species richness in the three different habitats were compared and no significant difference was found between them. It was concluded that most primary forest leaf litter ant species continue to survive in parts of the agricultural landscape which has largely replaced their original habitat.  相似文献   

8.
We compared the bird distributions in the understorey of treefall gaps and sites with intact canopy in Amazonian terra firme forest in Brazil. We compiled 2216 mist-net captures (116 species) in 32 gap and 32 forest sites over 22.3 months. Gap habitats differed from forest habitats in having higher capture rates, total captures, species richness and diversity. Seventeen species showed a significantly different distribution of captures between the two habitats (13 higher in gap and four higher in forest). Gap habitats had higher capture rates for nectarivores, frugivores and insectivores. Among insectivores, capture rates for solitary insectivores and army ant followers did not differ between the two habitats. In contrast, capture rates were higher in gaps for members of mixed-species insectivore flocks and mixed-species insectivore–frugivore flocks. Insectivores, especially members of mixed-species flocks, were the predominant species in gap habitats, where frugivores and nectarivores were relatively uncommon. Although few canopy species were captured in gap or forest habitats, visitors from forest mid-storey constituted 42% of the gap specialist species (0% forest) and 46% of rare gap species (38% forest). Insectivore, and total, captures increased over time, but did so more rapidly in gap than in forest habitats, possibly as a response to gap succession. However, an influx of birds displaced by nearby timber harvest also may have caused these increases. Avian gap-use in Amazonian terra firme forests differs from gap-use elsewhere, partly because of differences in forest characteristics such as stature and soil fertility, indicating that the avian response to gaps is context dependent.  相似文献   

9.
Nitrogen variations at different spatial scales and integrated across functional groups were addressed for lowland tropical forests in the Brazilian Amazon as follows: (1) how does N availability vary across the region over different spatial scales (regional × landscape scale); (2) how are these variations in N availability integrated across plant functional groups (legume × non-legume trees). Leaf N, P, and Ca concentrations as well the leaf N isotope ratios (δ15N) from a large set of legume and non-legume tree species were measured. Legumes had higher foliar N/Ca ratios than non-legumes, consistent with the high energetic costs in plant growth associated with higher foliar P/Ca ratios found in legumes than in non-legumes. At the regional level, foliar δ15N decreased with increasing rainfall. At the landscape level, N availability was higher in the forests on clayey soils on the plateau than in forests on sandier soils. The isotope as well as the non-isotope data relationships here documented, explain to a large extent the variation in δ15N signatures across gradients of rainfall and soil. Although at the regional level, the precipitation regime is a major determinant of differences in N availability, at the landscape level, under the same precipitation regime, soil type seems to be a major factor influencing the availability of N in the Brazilian Amazon forest.  相似文献   

10.
The dynamics of re-colonisation of disturbed patches may aid in the understanding of spatial variation of species richness. The present study experimentally tested the hypothesis that the variation of litter ant local species richness and composition is caused by the dynamics of re-colonisation after disturbances. We were particularly interested in whether the re-colonisation was by pre-existent species or species new to the patches, and whether the succession of species evidences the existence of dominance-controlled or founder-controlled communities. Litter patches of a forest remnant in Southeast Brazil were disturbed by removing most animals through litter drying, and litter samples were returned to the same sites from where they were removed. Ant species richness and composition were compared before and 2 months after the disturbance. Dissimilarity among disturbed and non-disturbed samples was compared to infer the succession model occurring after disturbance. Ant species richness did not recover after 2 months, and species composition of the disturbed samples showed more new colonisers than pre-existent species. Dissimilarity among samples in the disturbed plots was smaller than in the control plots, indicating a directional, or dominance-controlled, succession. The changes in species composition observed were caused by a decrease of some species, particularly predators, and an increase of species that are possibly opportunistic. Patches of litter are naturally disturbed in time and space, and evidence from the present paper indicates that succession occurring in these patches would lead to different species richness and compositions. Thus the dynamics of re-colonisation contributes to explaining the diversity of litter-dwelling ant communities at larger spatial and temporal scales. In each patch the succession seems to be directional, with opportunist species re-colonising preferentially empty plots. Therefore, these communities may attain a high diversity due to a small-scale patch dynamics model.  相似文献   

11.
Abstract.  1. This study examines limitation of nesting resources for leaf-litter and twig-nesting ants as a mechanism of diversity loss across an intensification gradient of coffee production in Colombia. Twelve farms were selected and classified into four management types: forest, polygeneric shade coffee, monogeneric shade coffee, and sun coffee (unshaded coffee monocultures).
2. At each of the farms, four treatment subplots were established at the corners of each of 10 25 m2 plots: (i) twig augmentation (adding 10 empty bamboo twigs); (ii) litter augmentation (tripling existing litter profile); (iii) twig and litter augmentation; and (iv) no manipulation control, for a total of 480 subplots. A twig addition experiment was also performed on coffee bushes.
3. The results showed significantly more ant colonies in the forest and monogeneric shade coffee litter augmentation plots after 4 months. Litter-nesting ant species richness was higher in all three shade systems than in the sun coffee. The identities of ants nesting on coffee bushes were different from those in the soil level litter. Fewer species nested in bamboo twigs placed in litter in the most intensive systems.
4. More ants nested in the resource addition treatments, and more ant species were found in forested habitats; however, a single mechanism cannot explain the observed patterns. It was concluded that a combination of bottom-up and top-down effects might lead to the loss of associated fauna with the intensification of these agroecosystems.  相似文献   

12.
Fire is extensively used in agricultural management in Mexico. There is little information on the effects of those practices on the abundance and diversity of animals that live within these forest soils. We studied the effect of slashing, burning and land use in a tropical deciduous forest on ant communities in the State of Jalisco, Mexico. The original vegetation (tropical deciduous forest) was modified into a corn field. Sampling was carried out in five stages: before slashing, after slashing, after burning, after seeding and after harvest. We found that very severe fires greatly reduced ant diversity. The most important effect of fire was the reduction of ant density, and the change of species composition and trophic guilds. These changes are relevant in the recycling process of energy in the ecosystem.  相似文献   

13.
Coarse woody debris (CWD) is an important component of the carbon cycle in tropical forests. We measured the volume and density of fallen CWD at two sites, Cauaxi and Tapajós in the Eastern Amazon. At both sites we studied undisturbed forests (UFs) and logged forests 1 year after harvest. Conventional logging (CL) and reduced impact logging (RIL) were used for management on areas where the geometric volumes of logs harvested was about 25–30 m3 ha?1. Density for five classes of fallen CWD for large material (>10 cm diameter) ranged from 0.71 to 0.28 Mg m?3 depending upon the degree of decomposition. Density of wood within large fallen logs varied with position relative to the ground and with distance from the center of the log. Densities for materials with diameters from 2 to 5 and 5 to 10 cm were 0.36 and 0.45 Mg m?3, respectively. The average mass (±SE) of fallen CWD at Cauaxi was 55.2 (4.7), 74.7 (0.6), and 107.8 (10.5) Mg ha?1 for duplicate UF, RIL, and CL sites, respectively. At Tapajós, the average mass of fallen CWD was 50.7 (1.1) Mg ha?1 for UF and 76.2 (10.2) Mg ha?1 for RIL for duplicate sites compared with 282 Mg ha?1 for live aboveground biomass. Small‐ and medium‐sized material (<10 cm dia.) accounted for 8–18% of the total fallen CWD mass. The large amount of fallen CWD at these UF sites relative to standing aboveground biomass suggests either that the forests have recently been subjected to a pulse of high mortality or that they normally suffer a high mortality rate in the range of 0.03 per year. Accounting for background CWD in UF, CL management produced 2.7 times as much CWD as RIL management. Excess CWD at logging sites would generate a substantial CO2 emission given the high rates of decay in moist tropical forests.  相似文献   

14.
Six hectares, three in a primary forest and three in a 40 year old secondary forest were inventoried for all trees with Diameter at Breast Height (DNH) of 10 cm or greater in a terra firme forest 200 km north-east of Manaus, central Amazonia in order to compare the difference between structure, species richness and floristic composition. Both species richness and tree density were significantly higher in the upland forest than in the secondary forest. The forest structure pattern analysed (DBH, basal area and estimated dry biomass) did not differ significantly between the two forest types. Similarity indices at species level were only 14%. In the 3 ha of primary forest the number of species varied from 137 to 159, the number of individuals from 639 to 713, total basal area from 32.8 to 40.2 m2 and estimate total of above-ground dry biomass (AGBM) from 405 to 560 tons per ha. In the 3 ha of secondary forest, the number of species varied from 86 to 90, the number of individuals from 611 to 653, total basal area from 28.8 to 39.9 m2 and estimated total AGBM from 340 to 586 tons per ha. Family Importance Value (FIV) is the sum of relative density, dominance and richness of a family. The most important families in relation to FIV were Burseraceae, Chrysobalanaceae, Lecythidaceae, Myristicaceae, Bombacaceae, Fabaceae and Mimosaceae in the 3 ha of primary forest, while Burseraceae, Lecythidaceae, Sapotaceae, Arecaceae and Cecropiaceae were the most important families in the 3 ha of secondary forest. Importance Value Index (IVI) is the sum of relative density, dominance and frequency of a species. Alexa grandiflora (Caesalpiniaceae), Sckronema micranthum (Bombacaceae) and Pourouma guianensis (Cecropiaceae) were the most important species in relation IVI, in the primary forest, while Eschweilera grandiflora (Lecythidaceae), Protium apiculatum (Burseraceae) and Bertholletia excelsa (Lecythidaceae) were the most important species in the secondary forest. We conclude that species richness was significandy different between the two forests, but that forest structure patterns analysed in this study (DBH, basal area and dry biomass) were similar. This demonstrates that 40 years was sufficient time for the secondary forest to recover the original structure of the primary forest, but not the original species richness. The low species similarity between the two forests indicates that the floristic composition was quite distinct and that the mixture of primary forest and disturbed forest has led to an increase in total species diversity.  相似文献   

15.
The remarkable biodiversity of the Brazilian Amazon is poorly documented and threatened by deforestation. When undocumented areas become deforested, in addition to losing the fauna and flora, we lose the opportunity to know which unique species had occupied a habitat. Here we quantify such knowledge loss by calculating how much of the Brazilian Amazon has been deforested and will likely be deforested until 2050 without having its tree flora sufficiently documented. To this end, we analysed 399 147 digital specimens of nearly 6000 tree species in relation to official deforestation statistics and future deforestation scenarios. We find that by 2017, 30% of all the localities where tree specimens had been collected were mostly deforested. Some 300 000 km2 (12%; 485 25 × 25 km grid cells) of the Brazilian Amazon had been deforested by 2017, without having a single tree specimen recorded. An additional 250 000–900 000 km2 of severely under-collected rainforest will likely become deforested by 2050. If future tree sampling is to cover this area, sampling effort has to increase two- to six-fold. Nearly 255 000 km2 or 7% of rainforest in the Brazilian Amazon is easily accessible but does yet but remain under-collected. Our study highlights how progressing deforestation increases the risk of losing undocumented species of a hyper-diverse tree flora.  相似文献   

16.
Fire is frequently used in the management of pastures in southern Brazil, but its effects on ground‐dwelling ant communities in Brazilian subtropical grasslands is still poorly understood. Here, we compared ant species richness and composition between periodically burned and unburned areas in native grasslands of the Atlantic Forest biome. In total, we found 35 epigeic ant species in burned and unburned areas. There was slightly higher species richness in burned than in unburned areas, independent of the sampling period (season). There was a significant difference in richness over the sampling period (season effect). Species composition varied significantly between the areas, in which nine species (26%) occurred only in burned areas, eight (23%) occurred only in unburned areas, and 18 (51%) occurred in both. Four species showed a significant preference for burned sites (Camponotus crassus, Linepithema humile and two undetermined species of Pheidole and Solenopsis). Although this study did not separate fire effects on ground‐dwelling ant communities (due to sampling design), it provides new information regarding subtropical native grasslands that can be used as a baseline for future studies.  相似文献   

17.
Aim To analyse the effects of forest fragmentation on ant communities in an Amazonian landscape that has been fragmented for over a century. Location The region surrounding the village of Alter do Chão in the Brazilian Amazonian state of Pará (2°30′ S, 54°57′ W). Methods Collection of ants and measurements of tree density were performed along transects established in eight sites in continuous forest and in 24 forest fragments surrounded by savanna vegetation. Data on size, perimeter, and degree of isolation (distance to continuous forest and distance to nearest area of forest > 5 ha) of each fragment were obtained from a georeferenced Landsat image of the study area. Results There were significant differences in species richness and composition between fragments and continuous forest, and these differences were not related to intersite variation in vegetation structure (tree density). Fragments supported fewer ant species per plot, and these species tended to represent a nested subset of those found in continuous forests. Fragments had significantly fewer rare species and fewer ant genera. However, fragments and continuous forest had similar numbers of species that also occur in the savanna matrix (i.e. that are not forest specialists). Multiple linear regression analyses indicated that species richness and composition in the fragments are significantly affected by fragment area, but not by fragment shape and degree of isolation. More species were found in larger fragments. Main conclusions Forest fragmentation influences the organization of ant communities in Amazonian savanna/forest landscapes. Forest fragments harboured, on average, 85% of the species found in continuous forest. That these fragments, despite their long history of isolation, support a relatively large complement of the species found in continuous forest is surprising, especially given that in some recently fragmented landscapes the proportion of species surviving in the fragments is lower. Differences in inter‐fragment distance and type of matrix between Alter do Chão and these other landscapes may be involved. The fact that fragments at Alter do Chão are surrounded by a natural (rather than an anthropogenic) habitat, and that most of them are less than 300 m from another forest area, may have helped to ameliorate the adverse effects of forest fragmentation.  相似文献   

18.
We found a hitherto unknown gland in the trochanter of several ant species. The gland occurs at the proximal ventral part of the trochanter in all legs. It consists of a thickening of the tegumental epithelium, the lining cuticle of which is characterized by narrow vertical pores that lead the secretion to the outside. Its function is probably that of producing lubricant substances to allow optimal manoeuvrability of the articulation between the trochanter and the coxa.  相似文献   

19.
The increase in biomass of different aquatic and terrestrial herbaceous plant communities was measured during various growth periods in the Amazon floodplain near Manaus. Maximum biomass varied from 4–11.2 t ha–1 dry weight in mixed annual terrestrial communities to 6–23 t ha–1 in aquatic annual species (Paspalum repens, Oryza perennis, Luziola spruceana and Hymenachne amplexicaulis) and 15.6–57.6 t ha–1 in communities of the perennial species Paspalum fasciculatum. Cumulative biomass of 3 successively growing annual species reached 30 t ha–1 a–1. Net primary production is considerably higher than maximum biomass. Paspalum fasciculatum reached 70 t during a growth period of 8 months. If one considers for annual species a monthly loss of 10–25% of the biomass, then net primary production in areas with three successive macrophyte communities and a cumulative maximum biomass of 30 t ha–1 is estimated to reach up to 50 t ha–1 a–1. Annual P/B ratio may reach about 3.  相似文献   

20.
In the Congo basin, considerable uncertainty remains about the amount and spatial variation of carbon stocks. We studied two types of seasonally flooded forests (dominated by Guibourtia demeusei and Lophira alata) and nearby terra firme forests in northern Congo. We sampled 1.25 ha per forest type and a total of 1,400 trees ≥5 cm diameter. AGB ranged from 207–343 Mg/ha, with no significant differences between forest types. Few significant differences were observed in vegetation structure or tree diversity between forest types. Species richness and stem density of small trees were lower, and dominance was higher in Guibourtia plots, which are subject to greater flooding than Lophira plots. Guibourtia was absent from smaller diameter class in Guibourtia forests; and Uapaca spp. were more abundant in terra firme than in seasonally flooded plots. We show that both types of seasonally flooded forests store important quantities of AGB and should also be considered in forest conservation programmes. We recommend more research on seasonally flooded forests, on larger geographical extent, which assesses flood depth and duration, and measures tree height in the field, as we took a conservative approach to AGB estimates, and AGB could be even greater than we report here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号