首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate the mechanisms responsible for survival and apoptosis/anoikis in normal human intestinal epithelial crypt cells, we analyzed the roles of various signaling pathways and cell adhesion on the expression of six Bcl-2 homologs (Bcl-2, Bcl-XL, Mcl-1, Bax, Bak, Bad) in the well established HIEC-6 cell model. Pharmacological inhibitors and/or dominant-negative constructs were used to inhibit focal adhesion kinase (Fak) and p38 isoforms, as well as the phosphatidylinositol 3'-kinase (PI3-K)/Akt-1 and mitogen-activated protein kinase [MAPK] kinase (MEK)/extracellular regulated kinases (Erk) pathways. Cell adhesion was disrupted by antibody-inhibition of integrin binding or forced cell suspension. The activation levels of studied kinase pathways were also analyzed. Herein, we report that beta1 integrins, Fak, and the PI3-K/Akt-1 pathway, but not beta4 integrins or the MEK/Erk pathway, are crucial for the survival of HIEC-6 cells. Conversely, p38beta, but not p38alpha or gamma, is required for the induction of apoptosis/anoikis in HIEC-6 cells. However, each of the signaling molecules/pathways analyzed were found to affect distinctively the individual expression of the Bcl-2 homologs studied. For example, the inhibition of the PI3-K/Akt-1 pathway down-regulated Bcl-XL, Mcl-1, and Bad, while at the same time up-regulating Bax, whereas the inhibition of Fak up-regulated both Bax and Bak, down-regulated Bad, and did not affect the other Bcl-2 homologs analyzed. These results indicate that integrins, Fak, PI3-K/Akt-1, MEK/Erk, and p38 isoforms perform distinct roles in the regulation of HIEC-6 cell survival and/or death. In addition, our data show that the functions performed by these molecules/pathways in promoting cell survival or apoptosis/anoikis translate into complex, differential modulations of individual Bcl-2 homologs.  相似文献   

2.
Myofiber survival and suppression of anoikis depend in large part on the merosin (laminin-2/-4)-integrin alpha7beta1D cell adhesion system; however, the question remains as to the nature of the signaling molecules/pathways involved. In the present study, we investigated this question using the C2C12 cell model of myogenic differentiation and its merosin- and laminin-deficient derivatives. Herein, we report that: 1) of four members of the Src family of tyrosine kinases studied (p60Src, p53/56Lyn, p59Yes, or p60Fyn), the expression and activity of p60Fyn are found in myotubes exclusively; 2) a severe decrease of p60Fyn activity correlates with myotube apoptosis/anoikis induced by pharmocological compounds (herbimycin A or PP2) which inhibit tyrosine kinases of the Src family, by merosin deficiency and by beta1 integrin inhibition; 3) myoblast survival depends on Fak and the MEK/Erk pathway, in contrast to myotubes; 4) the PI3-K pathway is not involved in either myoblast or myotube survival; and 5) p38alpha SAPK stimulation and activity (but not that of p38beta) are required in the progression of myotube apoptosis/anoikis induced by p60Fyn inhibition, merosin deficiency or beta1 integrin-inhibition; however, p38 is not involved in myoblast apoptosis. Taken together, these results suggest that the promotion of myotube survival by the merosin-alpha7beta1D adhesion system involves p60Fyn, and that disruptions in this cell adhesion system induce myotube apoptosis/anoikis through a p38alpha SAPK-dependent pathway.  相似文献   

3.
The adult small and large intestines display distinct expression profiles of Bcl-2 homologs, known regulators of apoptosis. This is thought to indicate that control mechanisms of intestinal apoptosis are gut segment-specific. Little is known on the expression of Bcl-2 homologs during gut development. In man, intestinal features and functions are acquired largely by mid-gestation (18-20 wks); the question whether segment-specific controls of intestinal apoptosis are also acquired early during development remains open. In the present study, we approached this by investigating the expression of six Bcl-2 homologs (Bcl-2, Bcl-XL, Mcl-1, Bax, Bak, Bad), and one nonhomologous associated molecule (Bag-1), during development of the human ileum and colon (12-20 wks of gestation). Beginning at 18 wks, we found that the epithelial localization of Bcl-2 homologs displayed differential patterns (or gradients) in both the ileum and colon; however, the patterns of some of the homologs differed between the two segments. For instance, Bag-1 and Bcl-2 exhibited crypt-villus decreasing gradients of expression in the ileum but not in the colon, whereas Mcl-1 displayed differing compartimentalizations between the two segments. Further analyses indicated that the steady-state expression levels of Bcl-2 homologs underwent modulations between 12 and 20 wks; however, the observed developmental profiles contrasted significantly between the two segments. For example, Bcl-2, Bag-1 and Bak levels increased in the colon, but the levels of these same homologs decreased in the ileum. Furthermore, by 18-20 wks, we found that the expression levels of each Bcl-2 homolog analyzed differed greatly between the ileum and colon. Altogether, these data indicate that the expression of Bcl-2 homologs is modulated differentially during human gut development in order to establish, by mid-gestation, distinct expression profiles for the small and large intestines. This in turn suggests that gut segment-specific control mechanisms of human intestinal apoptosis are acquired early during fetal life.  相似文献   

4.
How cells die in the absence of oxygen (anoxia) is not understood. Here we report that cells deficient in Bax and Bak or caspase-9 do not undergo anoxia-induced cell death. However, the caspase-9 null cells do not survive reoxygenation due to the generation of mitochondrial reactive oxygen species. The individual loss of Bim, Bid, Puma, Noxa, Bad, caspase-2, or hypoxia-inducible factor 1beta, which are potential upstream regulators of Bax or Bak, did not prevent anoxia-induced cell death. Anoxia triggered the loss of the Mcl-1 protein upstream of Bax/Bak activation. Cells containing a mitochondrial DNA cytochrome b 4-base-pair deletion ([rho(-)] cells) and cells depleted of their entire mitochondrial DNA ([rho(0)] cells) are oxidative phosphorylation incompetent and displayed loss of the Mcl-1 protein under anoxia. [rho(0)] cells, in contrast to [rho(-)] cells, did not die under anoxia. However, [rho(0)] cells did undergo cell death in the presence of the Bad BH3 peptide, an inhibitor of Bcl-X(L)/Bcl-2 proteins. These results indicate that [rho(0)] cells survive under anoxia despite the loss of Mcl-1 protein due to residual prosurvival activity of the Bcl-X(L)/Bcl-2 proteins. Collectively, these results demonstrate that anoxia-induced cell death requires the loss of Mcl-1 protein and inhibition of the electron transport chain to negate Bcl-X(L)/Bcl-2 proteins.  相似文献   

5.
The molecular determinants which dictate survival and apoptosis/anoikis in human intestinal crypt cells remain to be fully understood. To this effect, the roles of β1 integrin/Fak/Src signaling to the PI3-K/Akt-1, MEK/Erk, and p38 pathways, were investigated. The regulation of six Bcl-2 homologs (Bcl-2, Mcl-1, Bcl-XL, Bax, Bak, Bad) was likewise analyzed. We report that: (1) Anoikis causes a down-activation of Fak, Src, Akt-1 and Erk1/2, a loss of Fak–Src association, and a sustained/enhanced activation of p38β, which is required as apoptosis/anoikis driver; (2) PI3-K/Akt-1 up-regulates the expression of Bcl-XL and Mcl-1, down-regulates Bax and Bak, drives Bad phosphorylation (both serine112/136 residues) and antagonizes p38β activation; (3) MEK/Erk up-regulates Bcl-2, drives Bad phosphorylation (serine112 residue), but does not antagonize p38β activation; (4) PI3-K/Akt-1 is required for survival, whereas MEK/Erk is not; (5) Src acts as a cornerstone in the engagement of both pathways by β1 integrins/Fak, and is crucial for survival; and (6) β1 integrins/Fak and/or Src regulate Bcl-2 homologs as both PI3-K/Atk-1 and MEK/Erk combined. Hence, β1 integrin/Fak/Src signaling translates into integrated mediating functions of p38β activation and regulation of Bcl-2 homologs by PI3-K/Akt-1 and MEK/Erk, consequently determining their requirement (or not) for survival.  相似文献   

6.
In the adult small intestine, the dynamic renewal of the epithelium is characterized by a sequence of cell production in the crypts, cell maturation and cell migration to the tip of villi, where apoptosis is undertaken. Little is known about enterocytic apoptosis during development. In man, intestinal architectural features and functions are acquired largely by mid-gestation (18-20 wks); the question whether the establishment of enterocytic apoptotic processes parallels or not the acquisition of other intestinal functional features remains open. In the present study, we approached this question by examining enterocytic apoptosis during development of the human jejunum (9-20 wks gestation), using the ISEL (in situ terminal uridine deoxynucleotidyl nick-end labelling) method. Between 9 and 17 wks, apoptotic enterocytes were not evidenced. However, beginning at the 18 wks stage, ISEL-positive enterocytes were regularly observed at the tip of villi. Since the Bcl-2 family of proteins constitutes a critical checkpoint in apoptosis, acting upstream of the apoptotic machinery, we investigated the expression of six Bcl-2 homologs (Bcl-2, Bcl-X(L), Mcl-1, Bax, Bak, Bad) and one non-homologous associated molecule (Bag-1). By immunofluorescence, we found that all homologs analyzed were expressed by enterocytes between 9 and 20 wks. However, Bcl-2 homologs underwent a gradual compartmentalization of epithelial expression along the maturing crypt-villus axis, to establish gradients of expression by 18-20 wks. Western blot analyses indicated that the expression levels of Bcl-2 homologs were modulated during morphogenesis of the crypt-villus axis, in parallel to their gradual compartmentalization of expression. Altogether, these data suggest that regulatory mechanisms of human enterocytic apoptosis become established by mid-gestation (18-20 wks) and coincide with the maturation of the crypt-villus axis of cell proliferation, differentiation and renewal.  相似文献   

7.
The Bcl-2 family of proteins interacts at the mitochondria to regulate apoptosis. However, the anti-apoptotic Bcl-2 and Bcl-X(L) are not completely localized to the mitochondria. In an attempt to generate Bcl-2 and Bcl-X(L) chimeras that are constitutively localized to the mitochondria, we substituted their C-terminal transmembrane tail or both the C-terminal transmembrane tail and the adjacent loop with the equivalent regions from Bak or Bax mutant (BaxS184V) as these regions determine the mitochondrial localization of Bak and Bax. The effects of these substitutions on subcellular localization and their activities were assessed following expression in HeLa and CHO K1 cells. The substitution of the C-terminal tail or the C-terminal tail and the adjacent loop of Bcl-2 with the equivalent regions from Bak or the Bax mutant resulted in its association with the mitochondria. This change in subcellular localization of Bcl-2 chimeras triggered cells to undergo apoptotic-like cell death. The localization of this Bcl-2 chimera to the mitochondria may be associated with the disruption of mitochondrial membrane potential. Unlike Bcl-2, the loop structure adjacent to the C-terminal tail in Bcl-X(L) is crucial for its localization. To localize the Bcl-X(L) chimeras to the mitochondria, the loop structure next to the C-terminal tail in Bcl-X(L) protein must remain intact and cannot be substituted by the loop from Bax or Bak. The chimeric Bcl-X(L) with both its C-terminal tail and the loop structure replaced by the equivalent regions of Bak or Bax mutant localized throughout the entire cytosol. The Bcl-X(L) chimeras that are targeted to the mitochondria and the wild type Bcl-X(L) provided same protection against cell death under several death inducing conditions.  相似文献   

8.
《The Journal of cell biology》1996,134(6):1483-1497
Laminin (laminin-1; alpha 1-beta 1-gamma 1) is known to promote myoblast proliferation, fusion, and myotube formation. Merosin (laminin- 2 and -4; alpha 2-beta 1/beta 2-gamma 1) is the predominant laminin variant in skeletal muscle basement membranes; genetic defects affecting its structure or expression are the causes of some types of congenital muscular dystrophy. However, the precise nature of the functions of merosin in muscle remain unknown. We have developed an in vitro system that exploits human RD and mouse C2C12 myoblastic cell lines and their clonal variants to study the roles of merosin and laminin in myogenesis. In the parental cells, which fuse efficiently to multinucleated myotubes, merosin expression is upregulated as a function of differentiation while laminin expression is downregulated. Cells from fusion-deficient clones do not express either protein, but laminin or merosin added to the culture medium induced their fusion. Clonal variants which fuse, but form unstable myotubes, express laminin but not merosin. Exogenous merosin converted these myotubes to a stable phenotype, while laminin had no effect. Myotube instability was corrected most efficiently by transfection of the merosin-deficient cells with the merosin alpha 2 chain cDNA. Finally, merosin appears to promote myotube stability by preventing apoptosis. Hence, these studies identify novel biological functions for merosin in myoblast fusion and muscle cell survival; furthermore, these explain some of the pathogenic events observed in congenital muscular dystrophy caused by merosin deficiency and provide in vitro models to further investigate the molecular mechanisms of this disease.  相似文献   

9.
Muscle cell apoptosis accompanies normal muscle development and regeneration, as well as degenerative diseases and aging. C2C12 murine myoblast cells represent a common model to study muscle differentiation. Though it was already shown that myogenic differentiation of C2C12 cells is accompanied by enhanced apoptosis in a fraction of cells, either the cell population sensitive to apoptosis or regulatory mechanisms for the apoptotic response are unclear so far. In the current study we characterize apoptotic phenotypes of different types of C2C12 cells at all stages of differentiation, and report here that myotubes of differentiated C2C12 cells with low levels of anti-apoptotic Bcl-2 expression are particularly vulnerable to apoptosis even though they are displaying low levels of pro-apoptotic proteins Bax, Bak and Bad. In contrast, reserve cells exhibit higher levels of Bcl-2 and high resistance to apoptosis. The transfection of proliferating myoblasts with Bcl-2 prior to differentiation did not protect against spontaneous apoptosis accompanying differentiation of C2C12 cells but led to Bcl-2 overexpression in myotubes and to significant protection from apoptotic cell loss caused by exposure to hydrogen peroxide. Overall, our data advocate for a Bcl-2-dependent mechanism of apoptosis in differentiated muscle cells. However, downstream processes for spontaneous and hydrogen peroxide induced apoptosis are not completely similar. Apoptosis in differentiating myoblasts and myotubes is regulated not through interaction of Bcl-2 with pro-apoptotic Bcl-2 family proteins such as Bax, Bak, and Bad.  相似文献   

10.
A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-X(L), Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-X(L)/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-X(L), Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612.  相似文献   

11.
Bax is a member of the Bcl-2 family of proteins known to regulate mitochondria-dependent programmed cell death. Early in apoptosis, Bax translocates from the cytosol to the mitochondrial membrane. We have identified by confocal and electron microscopy a novel step in the Bax proapoptotic mechanism immediately subsequent to mitochondrial translocation. Bax leaves the mitochondrial membranes and coalesces into large clusters containing thousands of Bax molecules that remain adjacent to mitochondria. Bak, a close homologue of Bax, colocalizes in these apoptotic clusters in contrast to other family members, Bid and Bad, which circumscribe the outer mitochondrial membrane throughout cell death progression. We found the formation of Bax and Bak apoptotic clusters to be caspase independent and inhibited completely and specifically by Bcl-X(L), correlating cluster formation with cytotoxic activity. Our results reveal the importance of a novel structure formed by certain Bcl-2 family members during the process of cell death.  相似文献   

12.
The pro-apoptotic members of the Bcl-2 family include initiator proteins that contain only BH3 domains and downstream effector multi-BH domain-containing proteins, including Bax and Bak. In this report, we compared the ability of the six human anti-apoptotic Bcl-2 family members to suppress apoptosis induced by overexpression of Bax or Bak, correlating findings with protein interactions measured by three different methods: co-immunoprecipitation, glutathione S-transferase pulldown, and fluorescence polarization assays employing synthetic BH3 peptides from Bax and Bak. Bcl-B and Mcl-1 showed strong preferences for binding to and suppression of Bax and Bak, respectively. In contrast, the other anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-X(L), Bcl-W, and Bfl-1) suppressed apoptosis induced by overexpression of either Bax or Bak, and they displayed an ability to bind both Bax and Bak by at least one of the three protein interaction methods. Interestingly, however, full-length Bax and Bak proteins and synthetic Bax and Bak BH3 peptides exhibited discernible differences in their interactions with some anti-apoptotic members of the Bcl-2 family, cautioning against reliance on a single method for detecting protein interactions of functional significance. Altogether, the findings reveal striking distinctions in the behaviors of Bcl-B and Mcl-1 relative to the other anti-apoptotic Bcl-2 family members, where Bcl-B and Mcl-1 display reciprocal abilities to bind and neutralize Bax and Bak.  相似文献   

13.
Detachment of epithelial cells from the extracellular matrix (ECM) results in a form of apoptosis often referred to as anoikis. Transformation of intestinal epithelial cells by oncogenic ras leads to resistance to anoikis, and this resistance is required for the full manifestation of the malignant phenotype. Previously, we demonstrated that ras-induced inhibition of anoikis in intestinal epithelial cells results, in part, from the ras-induced constitutive downregulation of Bak, a pro-apoptotic member of the Bcl-2 family. Since exogenous Bak could only partially restore susceptibility to anoikis in the ras-transformed cells, the existence of at least another component of the apoptotic machinery mediating the effect of activated ras on anoikis was suggested. Indeed, here we show that, in nonmalignant rat and human intestinal epithelial cells, detachment from the ECM or disruption of the cytoskeleton results in a significant downregulation of the antiapoptotic effector Bcl-X(L), and that activated H- or K-ras oncogenes completely abrogate this downregulation. In addition, we found that enforced downregulation of Bcl-X(L) in the ras-transformed cells promotes anoikis and significantly inhibits tumorigenicity, indicating that disruption of the adhesion-dependent regulation of Bcl-X(L) is an essential part of the molecular changes associated with transformation by ras. While the ras-induced downregulation of Bak could be reversed by pharmacological inhibition of phosphatidylinositol 3 kinase (PI 3-kinase), the effect of ras on Bcl-X(L) was PI 3-kinase- and mitogen-activated protein kinase (MAP kinase)-independent. We conclude that ras-induced resistance to anoikis in intestinal epithelial cells is mediated by at least two distinct mechanisms: one that triggers downregulation of Bak and another that stabilizes Bcl-X(L) expression in the absence of the ECM.  相似文献   

14.
Bharatham N  Chi SW  Yoon HS 《PloS one》2011,6(10):e26014
Bcl-X(L), an antiapoptotic Bcl-2 family protein, plays a central role in the regulation of the apoptotic pathway. Heterodimerization of the antiapoptotic Bcl-2 family proteins with the proapoptotic family members such as Bad, Bak, Bim and Bid is a crucial step in the apoptotic regulation. In addition to these conventional binding partners, recent evidences reveal that the Bcl-2 family proteins also interact with noncanonical binding partners such as p53. Our previous NMR studies showed that Bcl-X(L): BH3 peptide and Bcl-X(L): SN15 peptide (a peptide derived from residues S15-N29 of p53) complex structures share similar modes of bindings. To further elucidate the molecular basis of the interactions, here we have employed molecular dynamics simulations coupled with MM/PBSA approach. Bcl-X(L) and other Bcl-2 family proteins have 4 hydrophobic pockets (p1-p4), which are occupied by four systematically spaced hydrophobic residues (h1-h4) of the proapoptotic Bad and Bak BH3 peptides. We observed that three conserved hydrophobic residues (F19, W23 and L26) of p53 (SN15) peptide anchor into three hydrophobic pockets (p2-p4) of Bcl-X(L) in a similar manner as BH3 peptide. Our results provide insights into the novel molecular recognition by Bcl-X(L) with p53.  相似文献   

15.
N Inohara  L Ding  S Chen  G Nú?ez 《The EMBO journal》1997,16(7):1686-1694
Programmed cell death is essential in organ development and tissue homeostasis and its deregulation is associated with the development of several diseases in mice and humans. The precise mechanisms that control cell death have not been elucidated fully, but it is well established that this form of cellular demise is regulated by a genetic program which is activated in the dying cell. Here we report the identification, cloning and characterization of harakiri, a novel gene that regulates apoptosis. The product of harakiri, Hrk, physically interacts with the death-repressor proteins Bcl-2 and Bcl-X(L), but not with death-promoting homologs, Bax or Bak. Hrk lacks conserved BH1 and BH2 regions and significant homology to Bcl-2 family members or any other protein, except for a stretch of eight amino acids that exhibits high homology with BH3 regions. Expression of Hrk induces cell death which is inhibited by Bcl-2 and Bcl-X(L). Deletion of 16 amino acids including the conserved BH3 region abolished the ability of Hrk to interact with Bcl-2 and Bcl-X(L) in mammalian cells. Moreover, the killing activity of this mutant form of Hrk (Hrk deltaBH3) was eliminated or dramatically reduced, suggesting that Hrk activates cell death at least in part by interacting with and inhibiting the protection afforded by Bcl-2 and Bcl-X(L). Because Hrk lacks conserved BH1 and BH2 domains that define Bcl-2 family members, we propose that Hrk and Bik/Nbk, another BH3-containing protein that activates apoptosis, represent a novel class of proteins that regulate apoptosis by interacting selectively with survival-promoting Bcl-2 and Bcl-X(L).  相似文献   

16.
BI-1 (Bax inhibitor-1) is an evolutionarily conserved multitransmembrane protein that resides in the endoplasmic reticulum (ER) and that has documented cytoprotective functions in both animals and plants. Recent studies indicate that BI-1 shares in common with Bcl-2/Bax family proteins the ability to regulate the amounts of Ca(2+) that can be released from the ER by agents, such as the ER-Ca(2+)-ATPase (SERCA) inhibitor thapsigargin (TG). Using an ER-targeted, Ca(2+) indicator (cameleon), with characteristics optimized for measuring ER Ca(2+) ([Ca(2+)](er)), we studied the effects of BI-1 on [Ca(2+)](er) in resting and TG-treated cells. Similar to cells overexpressing antiapoptotic Bcl-2 or Bcl-X(L), overexpression of BI-1 resulted in lower resting [Ca(2+)](er), with concomitantly less Ca(2+) released into the cytosol upon stimulation by TG and with a higher rate of Ca(2+) leakage from the ER. Co-expression of SERCA restored levels of [Ca(2+)](er) to normal, showing opposing actions of the ER-Ca(2+)ATPase and BI-1 on ER Ca(2+) homeostasis. Conversely, cells with deficient BI-1 have increased [Ca(2+)](er), and release more Ca(2+) into the cytosol when challenged with TG. In BI-1-deficient cells, Bcl-X(L) fails to reduce [Ca(2+)](er), indicating that BI-1 functions downstream of Bcl-X(L). In bax(-/-)bak(-/-) double knock-out cells, both BI-1 and Bcl-X(L) retained their ability to reduce [Ca(2+)](er), suggesting that BI-1 and Bcl-X(L) operate downstream of or parallel to Bax/Bak. The findings reveal a hierarchy of functional interactions of BI-1 with Bcl-2/Bax family proteins in regulating ER Ca(2+) homeostasis.  相似文献   

17.
Many viruses, including members of several poxvirus genera, encode inhibitors that block apoptosis by simultaneously binding the proapoptotic Bcl-2 proteins Bak and Bax. The Orthopoxvirus vaccinia virus encodes the Bcl-2-like F1 protein, which sequesters Bak but not Bax. However, N1, a potent virulence factor, is reported to be antiapoptotic and to interact with Bax. Here we investigated whether vaccinia virus inhibits Bak/Bax-dependent apoptosis via the cooperative action of F1 and N1. We found that Western Reserve (WR) and ΔN1L viruses inhibited drug- and infection-induced apoptosis equally. Meanwhile, infections with ΔF1L or ΔN1L/F1L virus resulted in similar levels of Bax activation and apoptosis. Outside the context of infection, N1 did not block drug- or Bax-induced cell death or interact with Bax. In addition to F1 and N1, vaccinia virus encodes further structural homologs of Bcl-2 proteins that are conserved in orthopoxviruses, including A46, A52, B14, C1, C6, C16/B22, K7, and N2. However, we found that these do not associate with Bax or inhibit drug-induced cell death. Based on our findings that N1 is not an antiapoptotic protein, we propose that the F1 orthologs represent the only orthopoxvirus Bcl-2 homolog to directly inhibit the Bak/Bax checkpoint.  相似文献   

18.
Pro-survival factor Bcl-X(L) can antagonize the pro-apoptotic functions of Bax and Bad via two distinct mechanisms. It can block Bax-mediated cell death by preventing Bax translocation from the cytosol to mitochondria. On the other hand, Bcl-X(L) can neutralize Bad by sequestering it to mitochondria. In order to map the domains of Bcl-X(L) involved in inhibiting Bax and Bad, we have carried out mutational analyses of this protein. This was done by deleting the key domains of Bcl-X(L), including its BH1-4 domains, the flexible loop, the C-terminal hydrophobic domain, and segments of the alpha5-alpha6 hairpin. The resulting Bcl-X(L) mutant constructs were then co-transfected with either GFP-Bax or GFP-Bad. We found that the BH1-4 domains and the C-terminal segment of Bcl-X(L) were essential for blocking Bax localization to mitochondria. On the other hand, only its BH1 and BH3 domains and the C-terminal hydrophobic segment were necessary for sequestering Bad to mitochondria. In addition, by immunoprecipitation analyses, we found that these deletions differentially affected the ability of the Bcl-X(L) mutant proteins to bind Bax and Bad. Finally, cell viability assays indicated that the BH1-4 domains of Bcl-X(L) were the primary domains required for inhibiting staurosporine-induced apoptosis, suggesting that distinct domains of Bcl-X(L) are involved in antagonizing Bax and Bad and in apoptosis inhibition.  相似文献   

19.
To investigate whether human intestinal epithelial cell survival involves distinct control mechanisms depending on the state of differentiation, we analyzed the in vitro effects of insulin, pharmacological inhibitors of Fak, MEK/Erk, and PI3-K/Akt, and integrin (beta1, beta4)-blocking antibodies on the survival of the well-established human Caco-2 enterocyte-like and HIEC-6 cryptlike cell models. In addition, relative expression levels of six Bcl-2 homologs (Bcl-2, Bcl-X(L), Mcl-1, Bax, Bak, and Bad) and activation levels of Fak, Erk-2, and Akt were analyzed. Herein, we report that 1) the enterocytic differentiation process results in the establishment of distinct profiles of Bcl-2 homolog expression levels, as well as p125(Fak), p42(Erk-2), and p57(Akt) activated levels; 2) the inhibition of Fak, of the MEK/Erk pathway, or of PI3-K, have distinct impacts on enterocytic cell survival in undifferentiated (subconfluent Caco-2, confluent HIEC-6) and differentiated (30 days postconfluent Caco-2) cells; 3) exposure to insulin and the inhibition of Fak, MEK, and PI3-K resulted in differentiation state-distinct modulations in the expression of each Bcl-2 homolog analyzed; and 4) Fak, beta1 and beta4 integrins, as well as the MEK/Erk and PI3-K/Akt pathways, are distinctively involved in cell survival depending on the state of cell differentiation. Taken together, these data indicate that human intestinal epithelial cell survival is regulated according to differentiation state-specific control mechanisms.  相似文献   

20.
The Bcl-2 family of proteins plays a central role in the regulation of mitochondrial outer-membrane permeabilization, a critical step in apoptosis. Heterodimerization between the pro- and anti-apoptotic members of Bcl-2 family is a key event in this process. Anti-apoptotic proteins have high levels of expression in many cancers and they have different affinities for different pro-apoptotic proteins. Experimentally determined structures of all members of Bcl-2 proteins have remarkably similar helical fold despite poor amino acid sequence identity. Peptides representing BH3 region of pro-apoptotic proteins have been shown to bind the hydrophobic cleft of anti-apoptotic proteins and this segment is responsible in modulating the apoptotic pathways in living cells. Understanding the molecular basis of protein-protein recognition is required to develop inhibitors specific to a particular anti-apoptotic protein. We have carried out molecular dynamics simulations on the anti-apoptotic Bcl-X(L) protein in complex with three different BH3 peptides derived from pro-apoptotic Bak, Bad and Bim proteins. Each complex structure was simulated for a period of 50 ns after 2.5 ns equilibration. Analysis of the simulation results showed that in the Bcl-X(L) protein, the helix containing the BH3 region is more flexible than other helices in all three simulations. A network of strong hydrophobic interactions exists between four of the six helices and they contribute significantly to the stability of this helix bundle protein. Analysis of Bcl-X(L)-BH3 peptide interactions reveals the role of loop residues in the protein-peptide interactions in all three simulations. Bad and Bim peptides maintain strong hydrophobic and hydrophilic interactions with the helix preceding the central hydrophobic helix. Residues from this helix interact with an Arg residue in Bad and Bim peptides. This Arg residue is next to the conserved Leu residue and is replaced by Ala in Bak. Absence of these interactions and the helix propensity are likely to be the cause for Bak peptide's weaker binding affinity with the Bcl-X(L) protein. The results of this study have implications in the design of Bcl-X(L)-specific inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号