首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteopetrosis in mammals results from a congenital reduction in bone resorption. Calvarial organ cultures were used to measure bone resorption in osteosclerotic (oc/oc) mice and their normal littermates. Measurements of cell-mediated resorption indicate that baseline isotope release by mutant calvariae was only 57% of that observed in normal littermates and isotope release by mutant bone in the presence of parathyroid hormone (PTH) was only 60% of that in normal controls. However, the response of oc calvariae to PTH was not different from normal bone when considered with respect to baseline resorption. These data indicate that bone resorption in oc mice is reduced in both its basal level and in response to PTH and suggest that oc mice are unable to establish normal baseline resorption which may in turn compromise their responsiveness to PTH.  相似文献   

2.
Osteoclast have been observe for the first time in toothless (t1) rats, a mutation with inherits osteopetrosis as an autosomal recessive. The ability of t1 rats to raise the serum calcium concentration after injection of parathyroid extract was severely limited when compared with normal littermates. In addition, osteopetrosis in t1 rats is not cured by radiation and infusion of normal spleen or bone marrow cells from normal littermates, a method know to cure osteopetrosis in mutants of this and other species. This indirect evidence for a reduction in bone resorption as a cause of osteopetrosis in this mutation and the failure of transplanted cells to cure the disease are discussed in relation to the development and function of osteoclasts.  相似文献   

3.
Cellular specificity of the cure for neonatal osteopetrosis in the ia rat   总被引:2,自引:0,他引:2  
Osteopetrosis in the ia/ia rat is known to be the result of reduced bone resorption due to abnormal osteoclasts. Studies in this mutant have shown that mononuclear cells from normal littermates could cure the skeletal sclerosis and result in the formation of normal osteoclasts when transplanted into ia/ia rats. This investigation was pursued in an attempt to determine the cellular source of this cure by transplanting various populations of cells from 21-day-old normal rats to unrelated newborn ia/ia recipients. The effects of treatment were evaluated radiographically and by measuring the size of the tibial marrow cavity. The cellular suspensions that were effective in curing the disease were the Ficoll-Hypaque isolate of spleen, bone marrow, and newborn livers. The Ficoll-Hypaque isolates of lymph node, thymus, and blood, and the adherent pool of peritoneal cells and splenic cells did not produce a cure in the ia/ia recipients. These results suggest that the cellular source of the cure is a stem cell. This conclusion is further substantiated by the finding that Thy 1.1 antigen (a stem cell marker in the rat) is expressed on a majority of the cells from the donor sources that affected a cure.  相似文献   

4.
The cellular distribution of osteoclast integrin subunits alpha(v) and beta(3), the tissue distribution, and level of the apparent ligand osteopontin (OPN) as well as of the putative regulatory enzyme tartrate-resistant acid phosphatase (TRAP) were studied along with the intracellular distribution of the activation marker c-src in osteopetrotic ia/ia (incisors-absent) mutant rats and their normal littermates. In ia/ia rats, the osteoclasts are incapable of bone matrix resorption. Ultrastructurally the cells exhibit extended clear zones at the expense of ordinary ruffled borders. A secretory dysfunction in the mutant is strongly suggested by the absence of detectable extracellular TRAP, concomitant with an accumulation of the enzyme in abundant small cytoplasmic vesicles. Moreover, TRAP mRNA, protein content, as well as enzymatic activity were elevated. Furthermore, increased levels of integrin subunits alpha(v) and beta(3) were detected at the clear zone of mutant osteoclasts. OPN mRNA levels were elevated in long bones from mutants. In ia/ia rats, immunolabeling for OPN was homogeneously distributed at the surface facing osteoclasts, while in normal littermates it was concentrated at the clear zone area and barely detectable at ruffled borders. The absence of OPN labeling in the abundant, putative intracellular secretory vesicles in mutant osteoclasts suggests that these cells do not produce OPN. The osteoclasts of ia/ia rats appeared to produce and translocate the c-src protein to the cell membrane. In ia/ia a defect ruffled border-formation is observed along with extensive clear zone formation and decreased secretory function. The lesion may be due to a signaling defect, but in that case the defect seems to be located downstream to or not involving the c-src pathway. Our results illustrate the close relationship between secretory function and ruffled border formation in osteoclasts, a relationship that appears to be necessary for proper resorptive function.  相似文献   

5.
Spleen cells from normal rats are known to cure osteopetrosis in ia littermates within 3 weeks. In this study cell suspensions from liver, thymus, bone marrow, salivary gland, skeletal muscle and brain from normal rats were tested for their ability to cure osteopetrosis in ia littermates whose ability to reject these cells had been suppressed by whole-body irradiation. Cells from liver, thymus and bone marrow cured the disease as effectively as spleen cells from normal littermates. Mutants that received cells from salivary gland, muscle and brain remained osteopetrotic. These data suggest that some cell found in spleen, liver, thymus and bone marrow of 10-day-old normal rats, such as a lymphoid cell or stem cell, can restore hemopoiesis and bone resorption in osteopetrotic (ia) rats.  相似文献   

6.
The reduced bone resorption characteristic of osteopetrosis is accompanied in the incisors-absent (ia) rat mutation by a significant increase in osteoclasts of inactive (mutant) phenotype. Restoration of bone resorption in ia rats by transfer of spleen cells from normal littermates is preceded by a transformation of osteoclasts from mutant to normal phenotype. In this investigation the proportions of osteoclasts of normal phenotype have been determined by light microscopy in untreated ia and normal rats and in ia rats treated with various cell populations from normal rats. Significant increases in numbers of osteoclasts of normal phenotype were seen in the mutant skeleton soon after cell treatments that eventually restored bone resorption and cured the disease. No changes in osteoclast phenotype were seen after cell transfers that did not cure the disease. These data establish transformation of osteoclast phenotype as an early event in the recovery from osteopetrosis and suggest that determination of osteoclast phenotype is a reliable predictor of the success of normal cell populations to restore bone resorption in this mutation.  相似文献   

7.
After ia (osteopetrotic) rats receive whole body radiation and an injection of spleen cells from a normal littermate, the dense, sclerotic skeleton characteristic of osteopetrosis is rapidly remodeled and becomes normal in appearance radiographically and histologically within three weeks. The mechanism of this skeletal transformation has been explored in cured ia rats by light and electron microscopic examination of osteoclasts. In ia rats less than 25 days of age, osteoclasts viewed by electron microscopy lack a ruffled border - the extensive elaboration of plasma membrane next to the bone surface. Cured ia rats have osteoclasts with ruffled borders indistinguishable from those of normal littermates. In ia rats that receive only 600 rads whole body radiation, osteoclasts are still present three weeks later, but appear abnormal by light microscopy, with dense nuclei and lacking cytoplasmic vacuoles next to the bone surface. Cured ia rats have two types of osteoclasts, one type indistinguishable from osteoclasts of normal littermates by light microscopy, the other resembling osteoclasts of ia rats that received radiation only. These data indicate that the mechanism of the spleen cell cure for osteopetrosis in ia rats is rapid remodeling of the skeleton produced by osteoclasts with ruffled borders. Whether normal spleen cells produce these osteoclasts directly by cell division or indirectly by elaboration of some unknown local factor required for formations of ruffled borders by ia osteoclasts is not known.  相似文献   

8.
The cellular distribution of osteoclast integrin subunits αv and β3, the tissue distribution, and level of the apparent ligand osteopontin (OPN) as well as of the putative regulatory enzyme tartrate-resistant acid phosphatase (TRAP) were studied along with the intracellular distribution of the activation marker c-src in osteopetrotic ia/ia (incisors-absent) mutant rats and their normal littermates. In ia/ia rats, the osteoclasts are incapable of bone matrix resorption. Ultrastructurally the cells exhibit extended clear zones at the expense of ordinary ruffled borders. A secretory dysfunction in the mutant is strongly suggested by the absence of detectable extracellular TRAP, concomitant with an accumulation of the enzyme in abundant small cytoplasmic vesicles. Moreover, TRAP mRNA, protein content, as well as enzymatic activity were elevated. Furthermore, increased levels of integrin subunits αv and β3 were detected at the clear zone of mutant osteoclasts. OPN mRNA levels were elevated in long bones from mutants. In ia/ia rats, immunolabeling for OPN was homogeneously distributed at the surface facing osteoclasts, while in normal littermates it was concentrated at the clear zone area and barely detectable at ruffled borders. The absence of OPN labeling in the abundant, putative intracellular secretory vesicles in mutant osteoclasts suggests that these cells do not produce OPN. The osteoclasts of ia/ia rats appeared to produce and translocate the c-src protein to the cell membrane.In ia/ia a defect ruffled border-formation is observed along with extensive clear zone formation and decreased secretory function. The lesion may be due to a signaling defect, but in that case the defect seems to be located downstream to or not involving the c-src pathway. Our results illustrate the close relationship between secretory function and ruffled border formation in osteoclasts, a relationship that appears to be necessary for proper resorptive function.  相似文献   

9.
High sodium chloride intakes are regarded as a risk factor for osteoporosis because they increase the obligatory urinary calcium loss and stimulate parathyroid activity. Sodium chloride loads induce osteopenia in the rat. The effect could be due to a decrease in bone formation or a rise in bone resorption. Two experiments were undertaken to study the effects of dietary NaCl supplementation on 3H-hydroxyproline synthesis and 45Ca uptake in femoral bone. Salt-treated rats excreted 1.7 times more total urinary hydroxyproline (P less than 0.001) and 2.1 times more recently labelled 3H-hydroxyproline than controls (P less than 0.02) but they did not accumulate less 3H-hydroxyproline or less 45Ca in their bones than controls. These results indicate that salt-mediated osteopenia is due to an increase in bone resorption, rather than to a decrease in bone formation.  相似文献   

10.
In this study, the ability of recombinant human macrophage (M) and murine granulocyte-macrophage (GM) colony stimulating factor (CSF) to affect both basal and stimulated bone resorption in fetal rat long-bone organ cultures was assessed. It was found that M-CSF does not affect basal bone resorption or bone resorption stimulated by parathyroid hormone, recombinant human interleukin 1 beta, prostaglandin E2 (PGE2), and 1,25 dihydroxy vitamin D3. Specifically, M-CSF at concentrations as high as 30 nM (1 microgram/mL) did not modulate 45Ca release from fetal rat long bones stimulated by these agents. The addition of recombinant murine GM-CSF (at equal molar concentration to M-CSF) also did not affect bone resorption stimulated by parathyroid hormone and interleukin 1 beta. On the other hand, GM-CSF stimulated basal bone resorption over a 120-h period and augmented the resorption mediated by exogenous PGE2 over a 48-h incubation. In addition, GM-CSF was shown to stimulate production of endogenous PGE2 in cultures of bone rudiments. These effects on bone resorption were blocked by the addition of prostaglandin synthesis inhibitors and specific antibodies to murine GM-CSF. These data indicate that M-CSF does not act as a regulator of bone turnover, but GM-CSF may cause bone resorption by stimulating the synthesis of PGE2 in bone.  相似文献   

11.
Effect of treadmill exercise on bone mass in female rats.   总被引:4,自引:0,他引:4  
Increasing peak bone mass at skeletal maturity, minimizing bone loss during middle age and after menopause, and increasing bone mass and preventing falls in advanced age are important measures for preventing osteoporotic fractures in women. Exercise has generally been considered to have a positive influence on bone health. This paper reviews the effects of treadmill exercise on bone in young, adult, ovariectomized, and osteopenic female rats. Treadmill exercise increases cortical and cancellous bone mass of the tibia as a result of increased bone formation and decreased bone resorption in young and adult rats. The increase in lumbar bone mass seems to be more significant when long-term exercise is applied. Treadmill exercise prevents cancellous bone loss at the tibia as a result of suppressed bone resorption in ovariectomized rats, and increases bone mass of the tibia and mechanical strength of the femur, as a result of suppressed bone resorption and increased bone formation in osteopenic rats after ovariectomy. Treadmill exercise transiently decreases the serum calcium level as a result of accumulation of calcium in bone, resulting in an increase in serum 1,25-dihydroxyvitamin D(3) level and a decrease in serum parathyroid hormone level. We conclude that treadmill exercise may be useful to increase bone mass in young and adult rats, prevent bone loss in ovariectomized rats, and increase bone mass and bone strength in osteopenic rats, especially in the long bones at weight-bearing sites. Treadmill exercise may have a positive effect on the skeleton in young, and adult, ovariectomized, and osteopenic female rats.  相似文献   

12.
《Bone and mineral》1989,5(3):271-278
Because of its synchrony and relative homogeneity, the subcutaneous model of the resorption of mineral-containing, devitalized bone particles (BPs) is useful to evaluate the recruitment, differentiation, and activity of bone-resorbing, osteoclastic cells. Bone particles were prepared from normal rats or mice and were implanted in normal and osteopetrotic rats (ia, tl, op strains) or mice (mi strain). In addition, particles of microcrystalline hydroxyapatite or polymethylmethacrylate were implanted into tl and op mutants and their unaffected littermates.Non-decalcified histomorphometry of elicited tissues after 12 days revealed significantly less resorption in in each mutant. Enzyme histochemical assays revealed that only normal animals showed tartrate-resistant acid phosphatase-positive cells around the BPs. In agreement with this, only normal animals showed ruffled borders against the BPs. op and tl strains were tested for generation of foreign body giant cells in response to particulate hydroxyapatite or polymethylmethacrylate and no differences were found between mutant and normal animals. These mutants appear to have intact fusion of mononuclear progenitors.These data show impaired recruitment of osteoclasts by BP implants in several rodent strains of osteopetrotic mutants.  相似文献   

13.
Avian Parathyroid Physiology: Including a Special Comment on Calcitonin   总被引:1,自引:0,他引:1  
During the reproductive cycle, the females of avian speciesmetabolize large amounts of calcium, deposit large amounts ofapatite in intramedullary bone, and develop hyperplastic andhypertrophied parathyroid glands. Secondary hyperparathyroidismdevelops when the amount of calcium in the diet is low. Hyperparathyroidism,either endogenous or from injections of parathyroid extract,produces resorption of endosteal bone and not mobilization ofthe deposits of intramedullary bone that normally store calciumfor calcification of the eggshell.The specificity of the siteof action of the hormone suggests that the process of mobilizationof mineral from intramedullary bone and fluctuations in thelevel of calcium in the blood are attributable not to the actionof the parathyroid hormone but indirectly to cyclical changesin the output of estrogen. Methods of measurement of calciumkinetics, parathyroid hormone-induced metabolic processes, andcellular reactions of bone cells to calcitonin should be investigatedin vitro in explants of intramedullary bone to learn more aboutthe specialized physiological characteristics of the tissue.  相似文献   

14.
Influence of parathyroid hormone (PTH) and hydrocortisone (HC) on growth and development of teeth during prefunctional period has been studied, employing radioactive tracers. Biosynthetic and reproductive activity of cells is estimated in the molar and incisor tissues. It has been established that PTH accelerates the process of local resorption of the bone along the alveolar crest, but does not influence upon the teeth growth, functional and reproductive activity of the pulp cells. HC inhibits protein and glycoprotein synthesis, decreases amount of proliferating cells, accelerates their differentiation and, thus, delays formation of the root and tooth growth.  相似文献   

15.
16.
We have previously established a rat model of chronic uremia, which is suitable to investigate the effect of various treatment modalities on renal osteodystrophy [1]. After four months subsequent to 5/6 nephrectomy, some animals were treated by gavage for 9 weeks with tap water (controls), or with aluminium (Al-citrate) 3 × 25 mg/week/kg b.wt ± subsequent deferoxamine (DFO) 3 × 50 mg/ week/kg b.wt. for 4 weeks. At termination of the study, serum clinical chemistry, femoral chemical composition and mechanical properties, calvarial parathyroid hormone (PTH)-elicited adenylate cyclase (AC) and phospholipase C (PLC) activities, cross-sectional femoral area, as well as bone histomorphometry, were analyzed. Animals given Al displayed moderately enhanced serum Al and bone Al accumulation, however, DFO-treatment did not fully alleviate bone Al retainment. A small increase in serum PTH was seen in all animals rendered uremic. Furthermore, a marked fall in serum alkaline phosphatase (ALP) below normal controls was observed in Al ± DFO-treated animals compared with uremic controls. The uremic condition led to reduced femoral ratios of hydroxyproline (HYP) over Ca2+ and phosphate (Pi), while Al-intoxication alone enhanced femoral Hyp contents above values seen for normal controls. The protracted ureamia caused a deterioration of long bone resilience and brittleness, however, Al ± DFO-treatment seemed to normalize the latter. Contrastingly, Al ± DFO-gavage enhanced time to fracture. Uremic rats intoxicated with Al showed a complete loss of calvarial PTH-sensitive AC and PLC activities. DFO-treatment normalized PTH-elicited PLC, while PTH-susceptible AC remained super-normal. Al apparently exerts a long term down-regulation of both PTH-sensitive signaling systems as evidenced by studies of rat UMR 106 osteosarcoma cells in culture. The uremic condition enhanced endosteal bone resorption as shown by femoral shaft dimension analysis, while AI ± DFO-treatment insignificantly reversed the condition. Finally, histomorphometrical analyses showed that DFO-administration tended to normalize aberrant trabecular bone volume, while rectifying both bone resorption and degree of mineralization. In conclusion, we assert that Al-intoxication hampers both processes (i.e. formation and resorption) of bone turnover, and that DFO-treatment to a certain extent prevents the uremia- and Al-induced bone disease in rats.  相似文献   

17.
Chronic inflammatory processes are often associated with bone resorption. Stimulated by the current great interest in the role of coagulation factors in inflammation and immune injury, we have studied the effect of thrombin on mouse calvarial bones in vitro. Thrombin caused a dose-dependent (0.1-7 U/ml) stimulation of 45Ca release from neonatal mouse calvarial bones. Thrombin also stimulated the mobilization of stable calcium and inorganic phosphate, the release of 3H from [3H]proline-labelled calvaria, the production of lactate and the release of the lysosomal enzymes, beta-glucuronidase and beta-N-acetylglucosaminidase. Thrombin also enhanced 45Ca release from fetal rat long bones, although this bone resorption assay was less sensitive to thrombin than the mouse calvarial system. The bone resorption stimulatory activity of thrombin in mouse calvaria could be inhibited by calcitonin and an increased concentration of phosphate in the culture medium. Thrombin-induced 45Ca release in mouse calvaria was sensitive to inhibition by hydrocortisone and dexamethasone. By contrast, 45Ca release response to parathyroid hormone was insensitive to corticosteroids. The prostaglandin synthetase inhibitors indomethacin, meclofenamic acid and naproxen and 5,8,11,14-eicosatetraynoic acid reduced 45Ca release from thrombin-stimulated calvaria. However, significant stimulation by thrombin could be achieved also in bones treated with inhibitors of arachidonate metabolism. The results obtained suggest that thrombin can stimulate cell-mediated bone resorption by an osteoclast-dependent mechanism. The mechanism of action may involve both prostaglandin-dependent and prostaglandin-independent pathways. Our findings indicate that thrombin may contribute to the bone resorptive processes seen in periodontal disease and rheumatoid arthritis.  相似文献   

18.
It is known that pharmacological or toxic doses of vitamin D induce bone resorption both in vivo and in vitro, whereas physiological doses of the vitamin have a protective effect on bone in vivo. To investigate the discrepancies of the dose-dependent effect of vitamin D on bone resorption, we examined the in vivo effect of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] on the expression of the receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL) and osteoprotegerin (OPG) mRNAs in bone of thyroparathyroidectomized (TPTX) rats infused with or without parathyroid hormone (PTH). Continuous infusion of 50 ng/h of PTH greatly increased the expression of RANKL mRNA in bone of TPTX rats. Expression of OPG mRNA was not altered by PTH infusion. When graded doses of 1,25(OH)(2)D(3) was daily administered orally for 14 days to normocalcemic TPTX rats constantly infused with PTH, 0.01 and 0.1 microg/kg of 1,25(OH)(2)D(3) inhibited the PTH-induced RANKL mRNA expression, but 0.5 microg/kg of the vitamin did not inhibit it. Regulator of G protein signaling-2 (RGS-2) gene expression was suppressed by 1,25(OH)(2)D(3) dose-dependently, but PTH/PTHrP receptor mRNA expression was not altered. Bone morphometric analyses revealed that 1,25(OH)(2)D(3) suppressed PTH-induced osteoclast number in vivo. These results suggest that pharmacological or toxic doses of 1,25(OH)(2)D(3) stimulate bone resorption by inducing RANKL, but a certain range of physiological doses of the vitamin inhibit PTH-induced bone resorption, the latter mechanism appeared to be mediated, at least in part, by the suppression of the PTH/PTHrP receptor-mediated signaling.  相似文献   

19.
Murine epidermal growth factor (EGF) stimulated the production of prostaglandin E2 (PGE2) and bone resorption in neonatal mouse calvaria in organ culture. The effect of EGF on bone resorption occurred at low concentrations of the polypeptide (half-max stimulation = 0.4 ng/ml, 6.6 × 10?11 M). All concentrations of EGF which stimulated resorption also stimulated the production of PGE2 by bone; concentrations of EGF which did not stimulate resorption did not enhance PGE2 production. EGF-induced formation of PGE2 and bone resorption were inhibited completely by indomethacin (200 ng/ml) and hydrocortisone (3 × 10?6 M). Indomethacin did not inhibit the bone resorption-stimulating activity of exogenous PGE2. The time courses of action of EGF, parathyroid hormone and exogenous PGE2 on bone resorption were similar. Brief exposure (15 or 60 min) to EGF (10 ng/ml) did not cause bone resorption or an increase in PGE2 accumulation in a subsequent 48-h incubation in the absence of EGF. High concentrations (30 to 100 ng/ml) of bovine fibroblast growth factor (FGF) also stimulated the production of PGE2 and bone resorption. We conclude that concentrations of EGF equal to or less than those present in mouse plasma stimulate the resorption of mouse bone in organ culture by a mechanism that involves the enhanced local production of PGE2.  相似文献   

20.
The effects of oophorectomy on the biological indices of bone remodelling and the time-course of their changes are described. In the first few months following surgical menopause the measurement of the markers of bone remodelling indicates that the increase in osteogenesis is delayed compared with that of bone resorption; this prevalence of destruction over new bone deposition justifies the deficiency of skeletal balance, shortly after acute oestrogen deficiency. The changes in bone remodelling are accompanied by an increase in serum calcium while serum immunoreactive parathyroid hormone levels remain unchanged or even decrease, suggesting a shift to right of the parathyroid gland set-point. The reasons for the negative skeletal balance after oophorectomy might be sought therefore at bone tissue level, even if changes in responsiveness and/or of the parathyroid gland set-point could also be contributory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号