首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Substructural details of the nuclear pore complex were studied in diverse plant and animal cells with both section technique and negative staining of isolated nuclear envelope pieces. The structures observed after the different techniques, including a variety of fixation procedures, are compared and their significance is discussed. It is shown that, down to the 15–20 Å level, the architecture of the nuclear pore complex is universal among such diverse cell types as from, e. g., onion root tips, bean leaves, mammalian liver parenchyma, HeLa cell cultures, and amphibian germ material. The fundamental substructures of the pore complex such as (1) the annular granules, (2) the fibrils attached to the annuli, (3) the central granules, (4) the fibrils in the pore interior including those which make up the inner ring and/or those which connect the central granule to the pore margin, are recognized in all cell types studied. The dynamic variability of the central granule morphology is emphasized and observations are presented which suggest that the view of such centrally located material as representing ribonucleoproteins in a transitory state of nucleocytoplasmic migration can be extended to generality. General concepts of the nuclear pore complex structure are presented as alternative model views revealing either a more compact, predominantly granular, or a more fibrillar aspect.The author gratefully acknowledges the frequent discussions and cooperation with his team-colleagues Drs. H. Falk (in the work on leaf material) and U. Scheer (in working with amphibian oocytes) as well as the skillful technical assistance of Miss Marianne Winter and Miss Sigrid Krien. The work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

2.
The time sequence of nuclear pore frequency changes was determined for phytohemagglutinin (PHA)-stimulated human lymphocytes and for HeLa S-3 cells during the cell cycle. The number of nuclear pores/nucleus was calculated from the experimentally determined values of nuclear pores/µ2 and the nuclear surface. In the lymphocyte system the number of pores/nucleus approximately doubles during the 48 hr after PHA stimulation. The increase in pore frequency is biphasic and the first increase seems to be related to an increase in the rate of protein synthesis. The second increase in pores/nucleus appears to be correlated with the onset of DNA synthesis. In the HeLa cell system, we could also observe a biphasic change in pore formation. Nuclear pores are formed at the highest rate during the first hour after mitosis. A second increase in the rate of pore formation corresponds in time with an increase in the rate of nuclear acidic protein synthesis shortly before S phase. The total number of nuclear pores in HeLa cells doubles from ~2000 in G1 to ~4000 at the end of the cell cycle. The doubling of the nuclear volume and the number of nuclear pores might be correlated to the doubling of DNA content. Another correspondence with the nuclear pore number in S phase is found in the number of simultaneously replicating replication sites. This number may be fortuitous but leads to the rather speculative possibility that the nuclear pore might be the site of initiation and/or replication of DNA as well as the site of nucleocytoplasmic exchange. That is, the nuclear pore complex may have multiple functions.  相似文献   

3.
4.
Evidence is presented for the uptake of the human X chromosome by human-Chinese hamster cell hybrids which lack H P R T activity, following incubation with isolated human HeLa S3 chromosomes. Sixteen independent clonal cell lines were isolated in H A T medium, all of which contained a human X chromosome as determined by trypsin-Giemsa staining. The frequency of H A T-resistant clones was 32 x 10(-6) when 10(7) cells were incubated with 10(8) HeLa chromosomes. Potential reversion of the hybrid cells in H A T medium was less than 5 x 10(-7). The 16 isolated cell lines all contained activity of the human X-linked marker enzymes H P R T, P G K,alpha-Gal A, and G6PD, as determined by electrophoresis. The phenotype of G6PD was G6PD A, corresponding to G6PD A in HeLa cells. The human parental cells used in the fusion to form the hybrids had the G6PD B phenotype. The recipient cells gave no evidence of containing human X chromosomes. These results indicate that incorporation and expression of HeLa X chromosomes is accomplished in human-Chinese hamster hybrids which lack a human X chromosome.  相似文献   

5.
Summary Macronuclear envelopes were isolated from the ciliated protozoan Tetrahymena pyriformis GL, negatively stained and examined in the electron microscope. The frequency of central granules in the macronuclear pores was evaluated in five different physiological states: (1) stationary phase of growth, (2) exponential phase of growth, (3) heat-synchronized cultures at the end of the heat-synchronization treatment, (4) heat-synchronized cultures at the beginning of the first division, (5) heat-synchronized cultures at the end of the first division.The percentage of pores containing a central granule was markedly enhanced in heatsynchronized cultures at the end of the first division, i.e. a state known for an increase in ribosome formation. Actinomycin D was found to cause a significant decrease in central granule frequency.The observed alterations in central granule frequency seem to confirm the hypotheses which consider the central granule as representing a ribonucleoprotein particle in transit from nucleus to cytoplasm through the nuclear pore.For careful technical assistance I am indebted to Miss Marianne Whiter as well as to Drs. H. Falk, W.W. Franke and P. Sitte for helpful discussions. This work was supported in part by the Deutsche Forschungsgemeinschaft.  相似文献   

6.
Ferric minerals in ferritins are protected from cytoplasmic reductants and Fe2+ release by the protein nanocage until iron need is signaled. Deletion of ferritin genes is lethal; two critical ferritin functions are concentrating iron and oxidant protection (consuming cytoplasmic iron and oxygen in the mineral). In solution, opening/closing (gating) of eight ferritin protein pores controls reactions between external reductant and the ferritin mineral; pore gating is altered by mutation, low heat, and physiological urea (1 mm) and monitored by CD spectroscopy, protein crystallography, and Fe2+ release rates. To study the effects of a ferritin pore gating mutation in living cells, we cloned/expressed human ferritin H and H L138P, homologous to the frog open pore model that was unexpressable in human cells. Human ferritin H L138P behaved like the open pore ferritin model in vitro as follows: (i) normal protein cage assembly and mineralization, (ii) increased iron release (t1/2) decreased 17-fold), and (iii) decreased alpha-helix (8%). Overexpression (> 4-fold), in HeLa cells, showed for ferritin H L138P equal protein expression and total cell 59Fe but increased chelatable iron, 16%, p < 0.01 (59Fe in the deferoxamine-containing medium), and decreased 59Fe in ferritin, 28%, p < 0.01, compared with wild type. The coincidence of decreased 59Fe in open pore ferritin with increased chelatable 59Fe in cells expressing the ferritin open pore mutation suggests that ferritin pore gating influences to the amount of iron (59Fe) in ferritin in vivo.  相似文献   

7.
Previous work has shown that several nucleoporins, including Nup62 are degraded in cells infected with human rhinovirus (HRV) and poliovirus (PV) and that this contributes to the disruption of certain nuclear transport pathways. In this study, the mechanisms underlying proteolysis of Nup62 have been investigated. Analysis of Nup62 in lysates from HRV-infected cells revealed that Nup62 was cleaved at multiple sites during viral infection. The addition of purified HRV2 2A protease (2Apro) to uninfected HeLa whole cell lysates resulted in the cleavage of Nup62, suggesting that 2Apro is a major contributor to Nup62 processing. The ability of purified 2Apro to cleave bacterially expressed and purified Nup62 demonstrated that 2Apro directly cleaves Nup62 in vitro. Site-directed mutagenesis of putative cleavage sites in Nup62 identified six different positions that are cleaved by 2Apro in vitro. This analysis revealed that 2Apro cleavage sites were located between amino acids 103 and 298 in Nup62 and suggested that the N-terminal FG-rich region of Nup62 was released from the nuclear pore complex in infected cells. Analysis of HRV- and PV-infected cells using domain-specific antibodies confirmed that this was indeed the case. These results are consistent with a model whereby PV and HRV disrupt nucleo-cytoplasmic trafficking by selectively removing FG repeat domains from a subset of nuclear pore complex proteins.  相似文献   

8.
将HeLa细胞中期染色体(簇)、非洲爪蟾卵提取物和ATP再生体系混合温育,能够促使细胞核自发重建。在此非细胞体系中重建的细胞核处于一般细胞核大小范围,具有典型的双层核膜,核孔复合体、染色质、核纤层、核骨架等结构,核重建具有一个明显的过程;发现环形片层通过与核膜融合方式参与核膜和核孔复合体组装。  相似文献   

9.
The membrane capacitance and conductance of cultured cells (HeLa and mouse myeloma) are investigated using the micropipette method. Mean values of the membrane capacities were found to be 1.9 microF/cm2 for HeLa cells and 1.0 microF/cm2 for myeloma cells. These values are in agreement with those obtained using the suspension method. Whereas the suspension method is unable to provide the information on membrane conductance, the micropipette method is able to measure even an extremely small membrane conductance if leakage current is negligibly small. The membrane conductances were found, using this technique, to be approximately 90-100 microS/cm2 for both HeLa and myeloma cells. One of the purposes of this study is to establish the frequency profile of membrane capacitance. It was found, however, that membrane capacitances of these cells are independent of frequency between 1 Hz and 1 KHz within the resolution of this technique.  相似文献   

10.
Viboud GI  Bliska JB 《The EMBO journal》2001,20(19):5373-5382
The bacterial pathogen Yersinia pseudotuberculosis uses type III secretion machinery to translocate Yop effector proteins through host cell plasma membranes. A current model suggests that a type III translocation channel is inserted into the plasma membrane, and if Yops are not present to fill the channel, the channel will form a pore. We examined the possibility that Yops act within the host cell to prevent pore formation. Yop- mutants of Y.pseudotuberculosis were assayed for pore-forming activity in HeLa cells. A YopE- mutant exhibited high levels of pore-forming activity. The GTPase-downregulating function of YopE was required to prevent pore formation. YopE+ bacteria had increased pore-forming activity when HeLa cells expressed activated Rho GTPases. Pore formation by YopE- bacteria required actin polymerization. F-actin was concentrated at sites of contact between HeLa cells and YopE- bacteria. The data suggest that localized actin polymerization, triggered by the type III machinery, results in pore formation in cells infected with YopE- bacteria. Thus, translocated YopE inhibits actin polymerization to prevent membane damage to cells infected with wild-type bacteria.  相似文献   

11.
Definitive characterization of human thymine glycol N-glycosylase activity   总被引:6,自引:0,他引:6  
An N-glycosylase activity that released cis-[3H]-5,6-dihydroxy-5,6-dihydrothymine (thymine glycol, TG) from chemically oxidized poly(dA-[3H]dT) was unambiguously characterized both in extracts of HeLa cells and in purified Escherichia coli endonuclease III. This was accomplished by use of microderivatization procedure that quantitatively converted cis-TG to 5-hydroxy-5-methylhydantoin (HMH). The reaction products were analyzed by high-pressure liquid chromatography before and after derivatization by using cis-[14C]TG and [14C]HMH, which had been independently synthesized, as reference compounds. This technique facilitated construction of a v/[E]t plot for the enzyme activity in HeLa cells, permitting estimation of its specific activity. The results obtained prove the existence of both human and bacterial N-glycosylase activities that effect removal of TG from DNA.  相似文献   

12.
Although many glycosylphosphatidylinositol (GPI)-anchored proteins have been observed as soluble forms, the mechanisms by which they are released from the cell surface have not been demonstrated. We show here that a cell-associated GPI-specific phospholipase D (GPI-PLD) releases the GPI-anchored, complement regulatory protein decay-accelerating factor (DAF) from HeLa cells, as well as the basic fibroblast growth factor-binding heparan sulfate proteoglycan from bone marrow stromal cells. DAF found in the HeLa cell culture supernatants contained both [3H]ethanolamine and [3H]inositol, but not [3H]palmitic acid, whereas the soluble heparan sulfate proteoglycan present in bone marrow stromal cell culture supernatants contained [3H]ethanolamine. 125I-labeled GPI-DAF incorporated into the plasma membranes of these two cell types was released in a soluble form lacking the fatty acid GPI-anchor component. GPI-PLD activity was detected in lysates of both HeLa and bone marrow stromal cells. Treatment of HeLa cells with 1,10-phenanthroline, an inhibitor of GPI-PLD, reduced the release of [3H]ethanolamine-DAF by 70%. The hydrolysis of these GPI-anchored molecules is likely to be mediated by an endogenous GPI-PLD because [3H]ethanolamine DAF is constitutively released from HeLa cells maintained in serum-free medium. Furthermore, using PCR, a GPI-PLD mRNA has been identified in cDNA libraries prepared from both cell types. These studies are the first demonstration of the physiologically relevant release of GPI-anchored proteins from cells by a GPI-PLD.  相似文献   

13.
The single base substitution mediated by chimeric RNA/DNA oligonucleotide is a new promising approach of gene therapy for single base mutation diseases. We exploited this approach to render HeLa cells resistant to ouabain by introducing a single base substitution in the alpha 1 subunit of the NA+/K+ ATPase human gene. The chimeric oligonucleotide was administered to HeLa cells by electroporation and the frequency of ouabain resistant cells determined. The results showed that the chimeric RNA/DNA oligonucleotide failed to enhance the frequency of ouabain resistant cells supporting the controversy about the conflicting results of the technique.  相似文献   

14.
In the eukaryotic cell, exchange of biomolecules between nucleus and cytoplasm is a highly regulated process which responds sensitively to changes of the environment. One well-known cellular response to environmental challenges is cell death by apoptosis. In fact, apoptosis has been shown to affect the nucleocytoplasmic transport machinery, in particular the nuclear pore, by modulating its size exclusion limit for passive diffusion. The underlying molecular factors are still unknown, mainly because of the lack of a suitable system to detect and quantitate the apoptotic effects on the nuclear pore. Here we present an assay that was designed to measure alterations of the permeability of the nuclear envelope under apoptotic conditions. The assay is based on the well-established technique of selective permeabilization of the plasma membrane with digitonin and allows assessment of permeability changes in nonfixed samples. It comprises a computer program, called Nuclear Permeability Assay, for the quantitation of the nuclear fluorescence signal, which may be generally employed for the evaluation of in vitro transport systems using semipermeabilized cells, such as assays for nuclear import and export.  相似文献   

15.
Introduction of anti-host factors into eukaryotic cells by extracellular bacteria is a strategy evolved by several Gram-negative pathogens. In these pathogens, the transport of virulence proteins across the bacterial membranes is governed by closely related type III secretion systems. For pathogenic Yersinia , the protein transport across the eukaryotic cell membrane occurs by a polarized mechanism requiring two secreted proteins, YopB and YopD. YopB was recently shown to induce the formation of a pore in the eukaryotic cell membrane, and through this pore, translocation of Yop effectors is believed to occur (Håkansson et al ., 1996b). We have previously shown that YopK of Yersinia pseudotuberculosis is required for the development of a systemic infection in mice. Here, we have analysed the role of YopK in the virulence process in more detail. A yopK -mutant strain was found to induce a more rapid YopE-mediated cytotoxic response in HeLa cells as well as in MDCK-1 cells compared to the wild-type strain. We found that this was the result of a cell-contact-dependent increase in translocation of YopE into HeLa cells. In contrast, overexpression of YopK resulted in impaired translocation. In addition, we found that YopK also influenced the YopB-dependent lytic effect on sheep erythrocytes as well as on HeLa cells. A yopK -mutant strain showed a higher lytic activity and the induced pore was larger compared to the corresponding wild-type strain, whereas a strain overexpressing YopK reduced the lytic activity and the apparent pore size was smaller. The secreted YopK protein was found not to be translocated but, similar to YopB, localized to cell-associated bacteria during infection of HeLa cells. Based on these results, we propose a model where YopK controls the translocation of Yop effectors into eukaryotic cells.  相似文献   

16.
The relative importance of pulse field strength E and pulse length tau 1/2 (half decay time of an exponential decay pulse) on the stable transfection frequency for HeLa or HUT-78 cells was investigated. Cells were transfected with plasmids containing the promoter and drug resistant genes pRSVgpt or pRSVneo by electroporation. The stable transfection frequency was assayed using the marker rescue technique. The transfection frequency increases with increasing values of E tau 1/2. For a given pulse length, the transfection frequency is proportional to the power of the pulse (E2 tau 1/2). Pulses with half decay times of 2.2 to 4.6 ms appear to be more efficient than 0.275 to 0.31 ms for stable transfection of HeLa cells.  相似文献   

17.
Patterns of histone acetylation   总被引:9,自引:0,他引:9  
  相似文献   

18.
The effect of various antimetabolites on nuclear pore formation was studied in synchronized HeLa S3 cells. The nuclear size was determined by light microscopy and the pore number per unit area of nuclear surface by the freeze-etching technique and electron microscopy. It was found that the inhibition of DNA replication or ribosomal RNA synthesis has no effect on nuclear size increase or pore formation. However, the inhibition of ATP synthesis effectively stops nuclear pore formation. Cycloheximide blocks nuclear pore formation at the same time during G1 phase of the cell cycle when nuclear size increase is blocked by high concentrations of actinomycin D. This suggests that certain proteins or other factors leading to pore formation and nuclear size increase are transcribed and synthesized at about 3–4 h after mitosis, i.e., about 1–2 h before S phase begins.  相似文献   

19.
A method is described that permits the rapid extration of the cell surface glycoproteins of two murine leukemic cells, the P-388 and the L-1210 cells as well as those of the human adenocarcinoma cells, the HeLa cells.Proof of the surface location of these glycoproteins is provided by labeling the intact cells; (a) with 125I by the lactoperoxidase iodination technique; (b) with 3H by the galactose oxidase-reductive tritiation method. Most of these glycoproteins were also shown to incorporate radioactive glucosamine and fucose. By these criteria as well as by the distribution of molecular weights, the surface glycoproteins of the two murine cells are indistinguishable; however, they differ markedly from the surface glycoproteins of HeLa cells. The extracts of the murine cells wee shown to contain lectin receptor activity as determined by their ability to inhibit the lectin-induced agglutination of the intact cells.  相似文献   

20.
The appearance of blood group O(H) on HeLa cells reflects a sequence of events resulting in the formation of a specific fucosyltransferase enzyme which catalyses the transfer of the immunodeterminant sugar, L-fucose, to a pre-existing cellular macromolecule producing the H antigen. The stability of the H antigen on this continuously cultured cell line1 suggests its use as a marker to study cellular self-renewal and intermediate metabolism leading to blood group formation. Group H was selected as it is stable on the HeLa cell and the biochemical genetics of soluble group H are reasonably clear2. Although group H of HeLa cells is membrane associated and not soluble, it is assumed that cell bound H formation is similar to that of soluble H formation and that a fucose enriched glycolipid molecule on the surface of the HeLa cell adopts the serological behaviour of group H. Also, mixed agglutination of HeLa cells by anti-H ulex extract is inhibited by 10?3 M L-fucose; other sugars do not possess inhibitory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号