首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Circadian variations in the proliferative activity of squamous epithelia are well known. However, circadian variations in the duration of the various cell cycle phases (S, G2 and mitosis) have been disputed. The percent labelled mitoses method, which is traditionally used to obtain duration of cell cycle phases, is poorly suited for identification of circadian variations. Therefore methods combining changes in compartment size (cell cycle phase) and cellular flux through the compartments have been used. Three different methods using such data are presented. These incorporate various simplifying assumptions that cause methodological errors. Limits for use of the different methods are indicated. The use of all three methods gives comparable and pronounced circadian variations in the duration of S and G2 phase. These results are also compatible with circadian variations in the mitotic duration, but they may also represent artefacts due to sensitivity to model errors.  相似文献   

2.
The novel phycoerythrin-containing Synechococcus strain CSIRNIO1 belonging to phylogenetic clade II was isolated from the coastal Arabian Sea. Chromophore characteristics of this isolate revealed the presence of phycoerythrin I (PEI), which allows it to utilize green light efficiently. The DNA distribution data indicate a bimodal slow growth model synchronized with the light/dark cycle. The duration of the cell cycle was regulated by spectral wavelength and nutrient concentration. Nitrate and phosphate enrichment shortened G1 phase duration when cells were exposed to equal doses of photosynthetically usable radiation (PUR) of different spectral wavelengths. G2 phase duration was influenced by spectral quality and phosphate concentration. S phase duration was not affected by the spectral wavelength. However, a shorter doubling time corresponding to shortened G1 and S phases was observed under nitrate enrichment. Phosphate enrichment resulted in shortening of all three phases (G1, S and G2). More efficient utilization of green and red light than blue light regulated the duration of the cell cycle as well as the doubling time, suggesting spectral selectivity in this strain. The effects of spectral wavelengths under varying nutrient concentrations will determine the proliferation of Synechococcus and its adaptation to different environmental conditions.  相似文献   

3.
Using an asynchronously growing cell population, we investigated how X-irradiation at different stages of the cell cycle influences individual cell–based kinetics. To visualize the cell-cycle phase, we employed the fluorescent ubiquitination-based cell cycle indicator (Fucci). After 5 Gy irradiation, HeLa cells no longer entered M phase in an order determined by their previous stage of the cell cycle, primarily because green phase (S and G2) was less prolonged in cells irradiated during the red phase (G1) than in those irradiated during the green phase. Furthermore, prolongation of the green phase in cells irradiated during the red phase gradually increased as the irradiation timing approached late G1 phase. The results revealed that endoreduplication rarely occurs in this cell line under the conditions we studied. We next established a method for classifying the green phase into early S, mid S, late S, and G2 phases at the time of irradiation, and then attempted to estimate the duration of G2 arrest based on certain assumptions. The value was the largest when cells were irradiated in mid or late S phase and the smallest when they were irradiated in G1 phase. In this study, by closely following individual cells irradiated at different cell-cycle phases, we revealed for the first time the unique cell-cycle kinetics in HeLa cells that follow irradiation.  相似文献   

4.
Circadian variations in the proliferative activity of squamous epithelia are well known. However, circadian variations in the duration of the various cell cycle phases (S, G2 and mitosis) have been disputed. the percent labelled mitoses method, which is traditionally used to obtain duration of cell cycle phases, is poorly suited for identification of circadian variations. Therefore methods combining changes in compartment size (cell cycle phase) and cellular flux through the compartments have been used. Three different methods using such data are presented. These incorporate various simplifying assumptions that cause methodological errors. Limits for use of the different methods are indicated. the use of all three methods gives comparable and pronounced circadian variations in the duration of S and G2 phase. These results are also compatible with circadian variations in the mitotic duration, but they may also represent artefacts due to sensitivity to model errors.  相似文献   

5.
A one-dimensional age-based population balance model of the cell cycle is proposed for a mouse-mouse hybridoma cell line (mm321) producing immunoglobulin G antibody to paraquat. It includes the four conventional cell cycle phases, however, G1 is divided into two parts (G1a and G1b). Two additional phases have been added, a non-cycling state G1', and a pre-death phase D. The duration of these additional phases is determined by cumulative glutamine content and ammonia concentration, respectively. It is assumed that glutamine is only consumed during G1 and antibody is only produced during G1b and S, the kinetics are assumed to be zero-order. Glucose is consumed throughout the cell cycle at a rate that is dependent upon its prevalent concentration. Ammonia and lactate are produced in direct proportion to glutamine and glucose consumption, respectively. Parameters in the model have been determined from experimental data or from fitting the model to post-synchronisation data. The model thus fitted has been used to successfully predict this cell lines behaviour in conventional batch culture at different initial glutamine concentrations, and in chemostat culture at steady-state and in response to a glutamine pulse. The model predicts viable cell, glutamine, glucose and lactate kinetics well, but there are some discrepancies in the prediction for ammonia and antibody. Overall, the results obtained support the assumptions made in the model relating to the regulation of cell cycle progression. It is concluded that this approach has the potential to be exploited with other cell lines and used in a model-based control scheme.  相似文献   

6.
For improving cell proliferation reducing agents are routinely used as medium supplements in murine cell cultures, however, they are rarely used for human peripheral blood lymphocytes (PBLs). Data on changes in cell kinetics induced by reducing agents are not available. Here cell kinetic alterations induced by reducing agents in human lymphocytes are revealed by applying flow cytometric BrdUrd/Hoechst cell cycle analysis and by using the exit kinetic model of Smith and Martin. Applying alpha-thioglycerol (a-TG) as a model compound it was shown that the major cell kinetic effect is a shortening of the mean duration of the G0/G1 phase. The minimum G0/G1 phase duration and the percentage of the non-cycling G0/G1 cell fraction decrease only slightly. Moreover, a lower number of PBL's are arrested in the G2/M phase of the 1st cell cycle. The durations of the S and G2/M phase in the 1st and G1 phase in the 2nd cycle are not affected. These cell kinetic effects are identical for lymphocytes from both adult and senescent donors. The supplementation of the cell cultures with recombinant IL-2 did not induce similar cell kinetic alterations compared with a-TG. This indicates that the variation of the cell cycle progression factor IL-2 is not solely responsible for improvement of the cell activation process in the G0/G1 phase.  相似文献   

7.
BACKGROUND: Flow cytometry of immunofluorescence and DNA content provides measures of cell-cycle-related gene expression (protein and/or epitope levels) for asynchronously growing cells. From these data, time-related expression through S phase can be directly measured. However, for G1, G2, and M phases, this information is unavailable. We present an objective method to model G1 and G2 kinetic expression from an estimate of a minimum biological unit of positive immunofluorescence derived from the distribution of specific immunofluorescence of mitotic cells. METHODS: DU 145 cells were stained for DNA, cyclin B1, and a mitotic marker (p105) and analyzed by flow cytometry. The cyclin B1 immunofluorescence (B1) distribution of p105-positive cells was used to model the B1 distribution of G2 and G1 cells. The G1/S and S/G2 interface measurements were used to calculate expression in S phase and test the validity of the approach. RESULTS: B1 at S/G2 closely matched the earliest modeled estimate of B1 in G2. B1 increased linearly through G1 and S but exponentially through G2; mitotic levels were equivalent to the highest G2 levels. G1 modeling of B1 was less certain than that of G2 due to low levels of expression but demonstrated general feasibility. CONCLUSIONS: By this method, the upper and lower bounds of cyclin B1 expression could be estimated and kinetic expression through G1, G2, and M modeled. Together with direct measurements in S phase, expression of B1 throughout the entire cell cycle of DU 145 cells could be modeled. The method should be generally applicable given model-specific assumptions.  相似文献   

8.
The treatment outcome of a given fractionated radiotherapy scheme is affected by oxygen tension and cell cycle kinetics of the tumor population. Numerous experimental studies have supported the variability of radiosensitivity with cell cycle phase. Oxygen modulates the radiosensitivity through hypoxia-inducible factor (HIF) stabilization and oxygen fixation hypothesis (OFH) mechanism. In this study, an existing mathematical model describing cell cycle kinetics was modified to include the oxygen-dependent G1/S transition rate and radiation inactivation rate. The radiation inactivation rate used was derived from the linear-quadratic (LQ) model with dependence on oxygen enhancement ratio (OER), while the oxygen-dependent correction for the G1/S phase transition was obtained from numerically solving the ODE system of cyclin D-HIF dynamics at different oxygen tensions. The corresponding cell cycle phase fractions of aerated MCF-7 tumor population, and the resulting growth curve obtained from numerically solving the developed mathematical model were found to be comparable to experimental data. Two breast radiotherapy fractionation schemes were investigated using the mathematical model. Results show that hypoxia causes the tumor to be more predominated by the tumor subpopulation in the G1 phase and decrease the fractional contribution of the more radioresistant tumor cells in the S phase. However, the advantage provided by hypoxia in terms of cell cycle phase distribution is largely offset by the radioresistance developed through OFH. The delayed proliferation caused by severe hypoxia slightly improves the radiotherapy efficacy compared to that with mild hypoxia for a high overall treatment duration as demonstrated in the 40-Gy fractionation scheme.  相似文献   

9.
A few nucleotide sites of nuclear exons that flank introns are often conserved. A hypothesis has suggested that these sites, called "proto-splice sites," are remnants of recognition signals for the insertion of introns in the early evolution of eukaryotic genes. This notion of proto-splice sites has been an important basis for the insertional theory of introns. This hypothesis predicts that the distribution of proto-splice sites would determine the distribution of intron phases, because the positions of introns are just a subset of the proto-splice sites. We previously tested this prediction by examining the proportions of the phases of proto-splice sites, revealing nothing in these proportion distributions similar to observed proportions of intron phases. Here, we provide a second independent test of the proto-splice site hypothesis, with regard to its prediction that the proto-splice sites would mimic intron phase correlations, using a CDS database we created from GenBank. We tested four hypothetical proto-splice sites G / G, AG / G, AG / GT, and C/AAG / R. Interestingly, while G / G and AG / GT site phase distributions are not consistent with actual introns, we observed that AG / G and C/AAG / R sites have a symmetric phase excess. However, the patterns of the excess are quite different from the actual intron phase distribution. In addition, particular amino acid repeats in proteins were found to partially contribute to the excess of symmetry at these two types of sites. The phase associations of all four sites are significantly different from those of intron phases. Furthermore, a general model of intron insertion into proto-splice sites was simulated by Monte Carlo simulation to investigate the probability that the random insertion of introns into AG / G and C/AAG / R sites could generate the observed intron phase distribution. The simulation showed that (1) no observed correlation of intron phases was statistically consistent with the phase distribution of proto-splice sites in the simulated virtual genes; (2) most conservatively, no simulation in 10,000 Monte Carlo experiments gave a pattern with an excess of symmetric (1, 1) exons larger than those of (0, 0) and (2, 2), a major statistical feature of intron phase distribution that is consistent with the directly observed cases of exon shuffling. Thus, these results reject the null hypothesis that introns are randomly inserted into preexisting proto-splice sites, as suggested by the insertional theory of introns.  相似文献   

10.
A multi-staged population balance model is proposed to describe the cell cycle dynamics of myeloma cell cultivation. In this model, the cell cycle is divided into three stages, i.e., G1, S, and G2M phases. Both DNA content and cell volume are used to differentiate each cell from other cells of the population. The probabilities of transition from G1 to S and division of G2M are assumed to be dependent on cell volume, and transition probability from S to G2M is determined by DNA content. The model can be used to simulate the dynamics of DNA content and cell volume distributions, phase fractions, and substrate and byproduct concentrations, as well as cell densities. Measurements from myeloma cell cultivations, especially the FACS data with respect to DNA distribution and cell fractions in different stages, are employed for model validation.  相似文献   

11.
The effect of simian virus 40 large T-antigen (Tag) expression on the cell cycle of exponentially growing, established, mouse NIH 3T3 fibroblasts was examined by using a sensitive flow cytometric assay to analyze nonselected cells immediately after infection with a Tag-encoding recombinant retrovirus. Tag expression resulted in reduced percentages of G1-phase cells and increased percentages of S- and G2 + M-phase cells compared with cell populations infected with a control virus not encoding the Tag gene. Cell cycle-blocking drugs were used to examine the exit rate for each of the cell cycle phases, G1, S, and G2 + M, for Tag-expressing and Tag-nonexpressing cells growing in the same cell culture dish. As a result of Tag expression, the duration of the G1 phase was decreased (average G1-phase exit duration decreased by 18%) and the duration of the G2 + M phase was increased (average G2 + M exit duration increased by 29%). The duration of S phase was unaffected by Tag expression.  相似文献   

12.
A simple and convenient method of estimating cell cycle parameters was proposed. The means and the standard deviations of G1, S and G2 phase durations in the cell cycle of an ascites tumor, LY-1, a sub-line of Yoshida sarcoma, were estimated by plotting the fraction of the labelled mitoses on probit paper. The frequency distribution of the duration of each phase was assumed to follow a normal distribution. When this method was compared with the Monte Carlo program where each phase duration was assumed to follow a log-normal distribution, results by the two methods were in good agreement.  相似文献   

13.
The effect of caffeine and cycloheximide during the G2 phase on frequency of chromosomal aberrations and G2 duration was studied in control and X-ray-irradiated human lymphocytes in vitro. Caffeine treatments alone increase the frequencies of chromatid breakage and decrease the average G2 duration in control and X-ray-irradiated lymphocytes (40 R). Both caffeine effects are reversed by 0.5 micrograms/ml cycloheximide in combination treatments. Cycloheximide treatments alone prolong G2 duration in control as well as in X-ray-irradiated lymphocytes although no improvement in chromosome repairing by this inhibitor of protein synthesis was observed under the conditions of our experiments. We propose that the cycloheximide effect is associated with a low level of mitotic factors, required for the entrance into mitosis, which is maintained at a higher level in caffeine treatment alone. Finally, G2 delay has generally been associated with certain genome damage. The fact that the caffeine and cycloheximide effects on X-irradiated lymphocytes are also present in control lymphocytes (without X-rays) suggests that control of the G2 duration constitutes one of the mechanisms involved in DNA repair operating during the G2 phase.  相似文献   

14.
The distribution of murine bone marrow cells in regard to cell cycle was examined using flow cytometry technique. In normal NIH mice the percentage of cells being into phases G1/0, S and G2 + M constitutes 78, 15 and 7%, respectively. In mice subjected to X-irradiation (2, 12 Gy), the thermal burn, and X-irradiation plus the burn the proportion of G2 + M-cells increased, which may be presumably due to their delay on stage G2 of the cell cycle. The start and duration of the delay in the G2 phase depend upon the kind of damage applied.  相似文献   

15.
The parameters of cell population kinetics of symmetrical 1,2-dimethylhydrazine-induced colonic neoplasms and their adjacent colonic mucosa in the mouse were analyzed using the fraction labeled-mitoses curve method and compared with those of three groups of epithelial cells in the crypt of the descending colon of normal mouse. The analysis of three groups of epithelial cells in the crypt of normal mouse indicates that differentiation of epithelial cells was associated not only with a smaller proliferative pool of cells but also with a shortening of the duration of G2 phase and a prolongation of mitotic time. Other parameters of cell cycle did not change significantly. The mean cell cycle time of neoplastic cells in chemically induced colonic neoplasms was similar to that of epithelial cells in normal colon, but the variance was much greater in neoplastic cells. In neoplastic cells, the proliferative pool was greater, the G1 phase prlonged, and the S phase and the mitotic time became shorter as compared to epithelial cells in normal colon. The duration of G2 phase of neoplastic cells fell between the values of presumptive stem cells and differentiating cells in normal colon, compatible with the hypothesis that neoplastic cells are transformed stem cells defective in cellular differentiation. In the colonic mucosa immediately adjacent to neoplasms, the fraction-labeled-mitoses curve showed a flat second wave, indicating that the group of cells initially labeled by the pulse became a mixture of cells, some continuing the proliferative cycle normally, some going out of cycle, some slowing down in their passage from S through G2 to M, and some being arrested in mitotic phase. Such heterogeneous behavior of cells may be closely related to expansion of neoplasms. With some assumptions, however, cell cycle parameters of those normally cycling cells were estimated: the cell cycle time and the duration of G1 phase and mitotic phase were prolonged as compared to neoplastic cells and epithelial cells of normal colon.  相似文献   

16.
The ternary lipid system palmitoylsphingomyelin (PSM)/palmitoyloleoylphosphatidylcholine (POPC)/cholesterol is a model for lipid rafts. Previously the phase diagram for that mixture was obtained, establishing the composition and boundaries for lipid rafts. In the present work, this system is further studied in order to characterize the size of the rafts. For this purpose, a time-resolved fluorescence resonance energy transfer (FRET) methodology, previously applied with success to a well-characterized phosphatidylcholine/cholesterol binary system, is used. It is concluded that: (1) the rafts on the low raft fraction of the raft region are small (below 20 nm), whereas on the other side the domains are larger; (2) on the large domain region, the domains reach larger sizes in the ternary system (> approximately 75-100 nm) than in binary systems phosphatidylcholine/cholesterol (between approximately 20 and approximately 75-100 nm); (3) the raft marker ganglioside G(M1) in small amounts (and excess cholera toxin subunit B) does not affect the general phase behaviour of the lipid system, but can increase the size of the rafts on the small to intermediate domain region. In summary, lipid-lipid interactions alone can originate lipid rafts on very different length scales. The conclusions presented here are consistent with the literature concerning both model systems and cell membrane studies.  相似文献   

17.
Abstract. The retinoblastoma gene product (pRB) is a nuclear phosphoprotein with growth-suppressing effects. During early G, phase, pRB is underphosphorylated and bound in the nucleus. The association between the duration of the cell cycle/G, phase and the fraction of cells in GI with bound pRB was studied in the human pre-B cell line Reh. The cell-cycle duration was varied by growing cells at different concentrations (25, 10,2,0.5 and 0%) of fetal calf serum (FCS); pRB binding was studied by flow cytometry. The culture doubling time increased from 21 h in 25% FCS to 54 h in 0.5% FCS. Cell death occurred in the absence of FCS, and the culture doubling time therefore could not be defined. The fraction of cells in G, did not change significantly with decreasing FCS concentration (0.47 in 25% FCS, 0.52 in 0% FCS). In contrast, the fraction of G, cells with bound pRB increased from 0.12 in 25% FCS to 0.65 in 0% FCS. Continuous labelling with bromodeoxyuridine demonstrated that the growth fraction was close to unity at all FCS concentrations down to 0.5%, hence, the duration of the cell cycle was equal to the culture doubling time under these conditions. The duration of early G, phase (where pRB is underphosphorylated and bound) increased 10-fold, while the duration of late G, phase increased twofold, for Reh cells grown in 0.5% FCS compared with cells grown in 25% FCS. The increase in the duration of late G1, and the increased S and G,+M phase transit times, indicate that other factors, in addition to pRB kinase activity, regulate the duration of G, and the cell cycle of serum-deprived Reh cells.  相似文献   

18.
Dynamics of the mitotic cycle of the KEPV cells being on different interphase stages at the start of a 20 hour 2-mercaptoethanol (0.001 M) treatment has been studied during the treatment and for 11 hours after washing out the agent. The KEPV cells affected by mercaptoethanol during the interphase (G1, S, G2) were shown to continue their passage through the cycle to enter mitosis, but part of the cells of the S period and of the first half of the G2 period were arrested in the interphase. In the presence of mercaptoethanol, mitotic cells reach the metaphase stage, and their further behaviour depends on the duration of the treatment. For the first 8 hours of treatment, a phase of "unstable block" exists for cells that were in S and G2 periods at the beginning of treatment, while other cells are transformed into K-metaphases. 8 hours later a phase of "stable block" occurs and all the normal metaphases are transformed into K-metaphases. After washing out the culture from mercaptoethanol the cells are ejected from the block in K-metaphase. The transformation from K-metaphase into the normal metaphase is realised in the course of this process. The cells which were in S and G2 periods at the beginning of the treatment are ejected from the block simultaneously after washing, while the cells of the G1 period--with a small delay. After washing out mercaptoethanol the cells that were in the interphase (G1, S, G2) at the beginning of the treatment are capable of producing both multipolar mitoses and mitoses without cytotomy.  相似文献   

19.
20.
c-myc is an important protooncogene whose misregulation is believed to causally affect the development of numerous human cancers. c-myc null rat fibroblasts are viable but display a severe (two- to threefold) retardation of proliferation. The rates of RNA and protein synthesis are reduced by approximately the same factor, whereas cell size remains unaffected. We have performed a detailed kinetic cell cycle analysis of c-myc(-/-) cells by using several labeling and synchronization methods. The majority of cells (>90%) in asynchronous, exponential phase c-myc(-/-) cultures cycle continuously with uniformly elongated cell cycles. Cell cycle elongation is due to a major lengthening of G(1) phase (four- to fivefold) and a more limited lengthening of G(2) phase (twofold), whereas S phase duration is largely unaffected. Progression from mitosis to the G1 restriction point and the subsequent progression from the restriction point into S phase are both drastically delayed. These results are best explained by a model in which c-Myc directly affects cell growth (accumulation of mass) and cell proliferation (the cell cycle machinery) by independent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号