首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crude extracts of the anaerobic, cellulolytic protozoan Trichomitopsis termopsidis possessed endo-β-1,4-glucanase and cellobiase activities, as evidenced by hydrolytic action on carboxymethyl cellulose and cellobiose, respectively. Cell extracts also hydrolyzed microcrystalline cellulose. Hydrolysis of microcrystalline cellulose displayed optima at pH 5 and at 30°C, and glucose was the sole product liberated. Cellulolytic activities of T. termopsidis appeared to be entirely cell associated. Hydrolytic activity was also detected against Douglas fir wood powder, xylan, starch, and protein, but not chitin. The importance of these enzymes in the nutrition of T. termopsidis is discussed in terms of the natural habitat of this protozoan (the hindgut of wood-eating termites).  相似文献   

2.
SYNOPSIS. Trichomitopsis termopsidis (Cleveland), a cellulolytic hindgut symbiote of the termite Zootermopsis, has been cultivated axenically under anaerobic conditions. The medium consists of cellulose, reduced glutathione, fetal calf serum, yeast extract, and autoclaved rumen fluid or autoclaved rumen bacteria, in a buffered salt solution the composition of which is based on an analysis of Zootermopsis hindgut fluid. The hindgut contents of surface-sterilized termites were inoculated into anaerobic buffer-containing cellulose and serum. Repeated passages yielded mixed cultures of T. termopsidis and termite hindgut bacteria. Flagellates were then inoculated into complete medium containing antibiotics, and after 2 passages, axenic cultures of T. termopsidis were obtained. Various nutritional supplements, including clarified rumen fluid or heat-killed bacteria of several known species failed to support the growth of T. termopsidis when substituted for autoclaved rumen fluid. The flagellates did not grow when any of several carbohydrates were substituted for cellulose. Electron microscopy of flagellates from axenic cultures revealed that cellulose particles and partially digested bacteria were present in food vacuoles. No endosymbiotic bacteria were present in the cytoplasm indicating that T. termopsidis does not depend on living prokaryotes for cellulose digestion. The results suggest that T. termopsidis possesses the enzyme cellulase.  相似文献   

3.
Growth characteristics of a cellulolytic nitrogen-fixing bacterium isolated from a marine shipworm by Waterbury et al. (J. B. Waterbury, C. B. Calloway, and R. D. Turner, Science 221:1401-1403, 1983) are described. When grown microaerobically, the bacterium exhibited doubling times of about 2 days in cellulose-supplemented synthetic medium devoid of combined nitrogen. Maximum growth was reached 12 to 16 days after inoculation. Growth optima for pH, temperature, and NaCl concentration were 8.5, 30 to 35°C, and 0.3 M, respectively. During growth the bacterium produced succinic acid (0.026%) and acetic acid (0.010%). Formic acid (0.010%) was produced during the stationary growth phase. No growth was observed when glucose was the sole carbon source. Cellobiose supported weak growth, while longer-chain-length cellodextrins supported extensive growth. Analysis of residual carbohydrates in the medium during growth indicated that the bacterium catabolized a terminal glucose moiety from the cellodextrin chain.  相似文献   

4.
The relationship between xylophagous termites and the protists resident in their hindguts is a textbook example of symbiosis. The essential steps of lignocellulose degradation handled by these protists allow the host termites to thrive on a wood diet. There has never been a comprehensive analysis of lignocellulose degradation by protists, however, as it has proven difficult to establish these symbionts in pure culture. The trends in lignocellulose degradation during the evolution of the host lineage are also largely unknown. To clarify these points without any cultivation technique, we performed meta-expressed sequence tag (EST) analysis of cDNA libraries originating from symbiotic protistan communities in four termite species and a wood-feeding cockroach. Our results reveal the establishment of a degradation system with multiple enzymes at the ancestral stage of termite-protistan symbiosis, especially GHF5 and 7. According to our phylogenetic analyses, the enzymes comprising the protistan lignocellulose degradation system are coded not only by genes innate to the protists, but also genes acquired by the protists via lateral transfer from bacteria. This gives us a fresh perspective from which to understand the evolutionary dynamics of symbiosis.  相似文献   

5.
本研究旨在从麝鼠(Ondatra zibethicus)肠道中分离出高效分解纤维素的菌株,为开发纤维素分解菌微生物制剂提供菌种资源。本研究利用以羧甲基纤维素钠(CMC-Na)为单一碳源的培养基,从麝鼠盲肠内分离出--株高效分解纤维素的菌株WJ-3,并对该菌株进行形态鉴定、生理生化鉴定和16S.rDNA分子鉴定。对菌株WJ-3所产羧甲基纤维素酶(CMCase)进行酶学特性实验,分析此纤维素酶的最佳反应pH和最佳反应温度,以及此纤维素酶对不同温度和不同酸碱度的耐受性。结果表明,菌株WJ-3属于空气芽孢杆菌(Bacillus aerius),并将其命名为Bacillus aerius WJ-3。菌株WJ-3所产羧甲基纤维素酶在pH 4.0~6.0的范围内反应时,酶活性随pH值升高而增加,其最佳反应pH为6.0,且此纤维素酶在pH4.0~8.0范围内保存30min后均能保持80%以上的相对酶活性:菌株WJ-3所产羧甲基纤维素酶在温度30~50 ℃范围内反应时,随温度上升酶活性逐渐增加,在50 ℃时酶活性最高,之后随温度的升高酶活性逐渐下降,且纤维素酶在此温度范围内保存30 min后均能保持较高的酶活性。综上所述,菌株Bacillus aerius WJ-3所产羧甲基纤维素酶的酶活性较高,并且此纤维素酶的耐酸碱性及热稳定性良好,是具有一定利用价值的菌种资源。  相似文献   

6.
Nutritional requirements of Clostridium thermocellum were examined, and a defined medium was formulated which supported reproducible growth through 10 serial subcultures.  相似文献   

7.
Saccharum officinarum bagasse (common name: sugarcane bagasse) and Pennisetum purpureum (also known as Napier grass) are among the most promising feedstocks for bioethanol production in Argentina and Brazil. In this study, both biomasses were assessed before and after acid pretreatment and following hydrolysis with Nasutitermes aquilinus and Cortaritermes fulviceps termite gut digestome. The chemical composition analysis of the biomasses after diluted acid pretreatment showed that the hemicellulose fraction was partially removed. The (hemi) cellulolytic activities were evaluated in bacterial culture supernatants of termite gut homogenates grown in treated and untreated biomasses. In all cases, we detected significantly higher endoglucanase and xylanase activities using pretreated biomasses compared to untreated biomasses, carboxymethylcellulose and xylan. Several protein bands with (hemi) cellulolytic activity were detected in zymograms and two-dimensional gel electrophoresis. Some proteins of these bands or spots were identified as xylanolytic peptides by mass spectrometry. Finally, the diversity of cultured cellulolytic bacterial endosymbionts associated to both Argentinean native termite species was analyzed. This study describes, for the first time, bacterial endosymbionts and endogenous (hemi) cellulases of two Argentinean native termites as well as their potential application in degradation of lignocellulosic biomass for bioethanol production.  相似文献   

8.
Avicelase, carboxymethyl cellulase (CMCase), and β-glucosidase activities have been compared between Clostridium thermocellum and three extremely thermophilic, cellulolytic anaerobes, isolates TP8, TP11, and KT8. The three isolates were all small, gram-negative staining, oval-ended rods which occurred singly and, at exponential phase, in long chains. They were nonflagellated and no spores were visible. The KT8 and TP11 isolates caused clumping of the cellulose during growth. In all four organisms the CMCase activity paralleled cell growth; however, in C. thermocellum and TP8 the avicelase activity did not increase until early stationary phase. Total CMCase activity in C. thermocellum was significantly higher than in the three isolates; however, avicelase activities were much more comparable among the four organisms. C. thermocellum produced higher levels of ethanol, and all four organisms produced similar concentrations of acetate. The amounts of free and bound CMCase and avicelase activities were investigated. In C. thermocellum and TP8 most of the CMCase and avicelase activities were bound to the cellulose in the medium. In contrast, most of the CMCase activity in TP11 and KT8 was free in the culture supernatant; a significant percentage of avicelase activity was also free. The TP8 isolate was also grown on a defined medium with urea as sole nitrogen source and cellulose serving as the carbon source. Under these conditions the pattern of enzyme production was the same as that in the enriched medium, although the level of that production was considerably reduced.  相似文献   

9.
10.
11.
Bacteria from the Gut of Australian Termites   总被引:4,自引:3,他引:4       下载免费PDF全文
The major gut bacteria of the worker caste of nine species of Australian termites, belonging to four families, were isolated and identified to generic level. All species were either facultative anaerobes or strict aerobes. A correlation appears to exist between the major gut bacterium and the family to which the termite belongs. The major bacterium from the two lowest termites, Mastotermes darwiniensis (family Mastotermitidae) and Cryptotermes primus (family Kalotermitidae), was Streptococcus; from four species belonging to the Rhinotermitidae (Heterotermes ferox, Coptotermes acinaciformis, C. lacteus, Schedorhinotermes intermedius intermedius) it was Enterobacter; and from three species of the Termitidae (Nasutitermes exitiosus, N. graveolus, N. walkeri) it was Staphylococcus. Enterobacter was a minor symbiont of M. darwiniensis, C. primus, and N. graveolus; Streptococcus was a minor symbiont of H. ferox, C. lacteus, S. intermedius intermedius, and N. exitiosus; and Bacillus was a minor symbiont of C. acinaciformis and S. intermedius intermedius. M. darwiniensis possessed another minor symbiont tentatively identified as Flavobacterium. C. acinaciformis from three widely separated locations possessed a similar microbiota, indicating some form of control on the composition of the gut bacteria. Bacteria, capable of growth on N-free medium in the presence of nitrogen gas, were isolated from all termites, except N. exitiosus and N. walkeri, and were identified as Enterobacter. No cellulose-degrading bacteria were isolated.  相似文献   

12.
Isolation of a Cellulolytic Bacteroides sp. from Human Feces   总被引:1,自引:0,他引:1       下载免费PDF全文
An anaerobic cellulolytic bacterium, identified as a Bacteroides sp., was present in 10-8 g of feces from only one of five human subjects.  相似文献   

13.
Paul Ferrar 《Oecologia》1982,52(1):139-146
Summary Cellulose toilet roll baits were exposed in three different subhabitats at Nylsvley Reserve, northern Transvaal, and respective attacks by up to eight species of termites are described and illustrated. In broad-leaved savanna attack was principally by Microcerotermes, a slow feeder that attacked rolls throughout the year, finding about half the rolls exposed each season. In Acacia savanna attack was largely by Microtermes, a fast feeder active only at wetter times of year. In open, grassy areas there was relatively little attack, except sporadically by Macrotermes which consumed whole rolls within a day or two. Bush-fires delayed initial attack on rolls, perhaps because reduced surface litter gave less protection to soil. The amount of each roll eaten during the trials is shown in histograms; it was consistently greater in Acacia than in broad-leaved savanna. The soil-feeding termites Aganotermes and Promirotermes were attracted during the wet season to the undersides of rolls, perhaps as a source of organic-rich soil (or possibly of water).  相似文献   

14.
SYNOPSIS The time is ripe for protozoan ecologists to begin the general evaluation of the role of food quality in the energy transformations and materials flow in food webs involving protozoa and other small organisms. Current evidence suggests that major pathways of energy flow at any particular time depend upon the matches between prey species and consumers. There are 2 components to food quality related (informational) energy flow: (a) the information present in the molecular constitution of the prey; and (b) the ability of the protozoa to recognize and use it. If the evidence obtained from trophodynamic studies of 2 marine ciliates, Uronema marinum Dujardin and Euplotes vannus Müller indicates a generalized ability of protozoa to regulate catabolic reactions to points which optimize energetic gains from their food, then it may be one of the keys to the evolutionary successes of the group.  相似文献   

15.
Chitosan-degrading activities induced by glucosamine (GlcN) or N-acetylglucosamine (GlcNAc) were found in a culture filtrate of Trichoderma reesei PC-3-7. One of the chitosan-degrading enzymes was purified to homogeneity by precipitation with ammonium sulfate followed by anion-exchange and hydrophobic-interaction chromatographies. The enzyme was monomeric, and its molecular mass was 93 kDa. The optimum pH and temperature of the enzyme were 4.0 and 50 degrees C, respectively. The activity was stable in the pH range 6.0 to 9.0 and at a temperature below 50 degrees C. Reaction product analysis from the viscosimetric assay and thin-layer chromatography and H nuclear magnetic resonance spectroscopy clearly indicated that the enzyme was an exo-type chitosanase, exo-beta-d-glucosaminidase, that releases GlcN from the nonreducing end of the chitosan chain. H nuclear magnetic resonance spectroscopy also showed that the exo-beta-d-glucosaminidase produced a beta-form of GlcN, demonstrating that the enzyme is a retaining glycanase. Time-dependent liberation of the reducing sugar from partially acetylated chitosan with exo-beta-d-glucosaminidase and the partially purified exo-beta-d-N-acetylglucosaminidase from T. reesei PC-3-7 suggested that the exo-beta-d-glucosaminidase cleaves the glycosidic link of either GlcN-beta(1-->4)-GlcN or GlcN-beta(1-->4)-GlcNAc.  相似文献   

16.
We investigated the presence of different carotenoids in male human subject after the ingestion of paprika juice, and identified capsanthin, capsanthone, cucurbitaxanthin A, 11-cis-capsanthin, lutein and zeaxanthin in the human plasma. These results suggest that capsanthone and 11-cis-capsanthin might be as important as capsanthin for human health.  相似文献   

17.
Biological nitrogen fixation by the microorganisms in the gut of termites is one of the singularly important symbiotic processes, since termites invariably thrive on nitrogen poor diet. Two isolates of free living aerobic and facultative anaerobic N fixing bacteria were obtained from the guts of fungus cultivating termite, Macrotermes sp. Among the total bacterial isolates from termite gut, the per cents of N fixing aerobes viz., Azotobacter and Beijerinckia spp were 49% and 37% from the salivary gland while facultative N fixing anaerobe viz., Klebsiella and Clostridium contributed (51% and 93%). The free living aerobic bacteria were identified as Azotobacter spp (19 x 104 CFU mL‐1) and Beijerinckia (13.2 x 104 CFU mL‐1) from the salivary gland of the termite; interestingly, foregut, mid gut and hind gut registered a low population of these bacteria. The isolates of Azotobacter were smooth, glistening, vicid in nature, rods, gram negative and cyst forming. Isolates of Beijerinckia sp. produced copious slime, tenacious, rods, gram negative with no cyst formations. Both the isolates emitted green fluorescence and produced acid. Facultative N fixing anaerobes were harbored in the hind gut. The isolates were identified as Klebsiella (20 x 104 CFU mL‐1) and Clostridium pasteurianum 39.1 x 104 CFU mL‐1. Klebsiella were straight rods arranged singly or in pairs, non‐motile, gram negative, whereas Clostridium pasteurianum was viscoid, motile with terminal spores. A positive correlation was observed between the extractable polysaccharides of these isolates and soil aggregation. The aggregates formed by the isolates increased soil aeration, porosity, water holding capacity and helped in better plant growth. Thus, the gut microflora of termite, apart from harnessing nitrogen from the atmosphere, also helps improving soil fertility.  相似文献   

18.
Isolation of Cellulolytic Actinomycetes from Marine Sediments   总被引:3,自引:0,他引:3       下载免费PDF全文
The cellulolytic activity of 36 actinomycetes strains isolated from marine sediments was investigated by the cellulose-azure method. Approximately 50% of the isolates exhibited various degrees of cellulolytic activity.  相似文献   

19.
The rate and extent of initiation of callus from potato tuberdiscs depends on the concentrations of auxin and kinetin inthe medium on which they are grown. NAA is the most effectiveauxin, initiating callus at a concentration (0. 01 mg/1) anorder of magnitude lower than for IAA or 2,4-D. There is a week'slag before initiation begins with IAA or 2,4-D. In combinationwith each auxin, kinetin is inhibitory to initiation of callusand its growth on the explant. High-intensity light and lowtemperature are also inhibitory. In isolated callus subcultured so as to prevent dilution ofits accumulated auxin, the only effect of varying exogenousauxin levels is as a progressive inhibition by NAA. If thisdilution is permitted, however, 2,4-D and IAA have an optimumgrowth promoting activity at 1 mg/1, whereas the effect of NAAincreases up to 10 mg/1. The growth of the callus is affectedby agar concentration (1 per cent optimum), and is halted bypH values below 5. The callus grows on various carbon sourcesbut is dependent upon one or more components of N. Z. Amine;it also requires a number of micronutrients. A suspension culture from the callus exhibits the usual growthcurve. The phenolic content follows a pattern different fromthat of growth, protein, and RNA content, and phenolics arerapidly synthesized as active growth ceases. In contrast tothe callus tissue, the suspension culture grows at a wide rangeof pH values and buffers the medium. At low temperatures in the light, potato discs produce greencallus with a chlorophyll content corresponding to that of thediscs from which they grew. The isolated callus tissue doesnot require kinetin and produces and excretes its own cytokinin(s).The amount synthesized varies over the growth cycle.  相似文献   

20.
Isolated rumen bacteria were examined for growth and, where appropriate, for their ability to degrade cellulose in the presence of the hydroxycinnamic acids trans-p-coumaric acid and trans-ferulic acid and the hydroxybenzoic acids vanillic acid and 4-hydroxybenzoic acid. Ferulic and p-coumaric acids proved to be the most toxic of the acids examined and suppressed the growth of the cellulolytic strains Ruminococcus albus, Ruminococcus flavefaciens, and Bacteroides succinogenes when included in a simple sugars medium at concentrations of >5 mM. The extent of cellulose digestion by R. flavefaciens and B. succinogenes but not R. albus was also substantially reduced. Examination of rumen fluid from sheep maintained on dried grass containing 0.51% phenolic acids showed the presence of phloretic acid (0.1 mM) and 3-methoxyphloretic acid (trace) produced by hydrogenation of the 2-propenoic side chain of p-coumaric and ferulic acids, respectively. The parent acids were found in trace amounts only, although they represented the major phenolic acids ingested. Phloretic and 3-methoxyphloretic acids proved to be considerably less toxic than their parent acids. All of the cellulolytic strains (and Streptococcus bovis) showed at least a limited ability to hydrogenate hydroxycinnamic acids, with Ruminococcus spp. proving the most effective. No further modification of hydroxycinnamic acids was produced by the single strains of bacteria examined. However, a considerable shortfall in the recovery of added phenolic acids was noted in media inoculated with rumen fluid. It is suggested that hydrogenation may serve to protect cellulolytic strains from hydroxycinnamic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号