首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Src family of protein tyrosine kinases have been implicated in the response of cells to several ligands. These include platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and colony stimulating factor type 1 (CSF-1, in macrophages and in fibroblasts engineered to express the receptor). We recently described a microinjection approach which we used to demonstrate that Src family kinases are required for PDGF-induced S phase entry of fibroblasts. We now use this approach to ask whether other ligands also require Src kinases to stimulate cells to replicate DNA. An antibody specific for the carboxy terminus of Src, Fyn, and Yes (anti-cst.1) inhibited Src kinase activity in vitro and caused morphological reversion of Src transformed cells in vivo. Microinjection of this antibody was used to demonstrate that Src kinases were required for both CSF-1 and EGF to drive cells into the S phase. Expression of a kinase-inactive form of Src family kinases also prevented EGF- and CSF-1-stimulated DNA synthesis. However, even though the Src family kinases were necessary for both PDGF- and EGF-induced DNA synthesis in Swiss 3T3 cells, the responses to two other potent growth factors for these cells, lysophosphatidic acid and bombesin, were unaffected by the neutralizing antibodies. Therefore, some but not all growth factors required functional Src family kinases to transmit mitogenic responses.  相似文献   

2.
Protein tyrosine kinases play key roles in many molecular and cellular processes in diverse living organisms. Their proper functioning is crucial for the normal growth, development, and health in humans, whereas their dysfunction can cause serious diseases, including various cancers. As such, intense studies have been performed to understand the molecular mechanisms by which the activities of protein tyrosine kinases are regulated in mammalian cells. Particularly, small molecules that can modulate the activity of tyrosine kinases are of great importance for discovering therapeutic drug candidates for numerous diseases. Notably, heme cannot only serve as a prosthetic group for hemoglobins and enzymes, but it also is a small signaling molecule that can control the activity of diverse signaling and regulatory proteins. Using a computational search, we found that a group of non-membrane spanning tyrosine kinases contains one or more CP motifs that can potentially bind to heme and mediate heme regulation. We then used experimental approaches to determine whether heme can affect the activity of any of these tyrosine kinases. We found that heme indeed affects the phosphorylation of key tyrosine residues in Jak2 and Src, and is therefore able to modulate Jak2 and Src activity. Further experiments showed that Jak2 and Src bind to heme and that the presence of heme alters the sensitivity of Jak2 and Src to trypsin digestion. These results suggest that heme actively interacts with Jak2 and Src and alters their conformation.  相似文献   

3.
4.
The cytokine prolactin (PRL) plays important roles in the proliferation and differentiation of the mammary gland and it has been implicated in tumorigenesis. The prolactin receptor (PRLR) is devoid of catalytic activity and its mitogenic response is controlled by cytoplasmic tyrosine kinases of the Src (SFK) and Jak families. How PRLR uses these kinases for signaling is not well understood. Previous studies indicated that PRLR-induced Jak2 activation does not require SFK catalytic activity in favor of separate signaling operating on this cellular response. Here we show that, nevertheless, PRLR requires Src-SH2 and -SH3 domains for Jak2 signaling. In W53 lymphoid cells, conditional expression of two c-Src non-catalytic mutants, either SrcK295M/Y527F or Src?K, whose SH3 and SH2 domains are exposed, controls Jak2/Stat5 activation by recruiting Jak2, avoiding its activation by endogenous active SFK. In contrast, the kinase inactive SrcK295M mutant, with inaccessible SH3 and SH2 domains, does not. Furthermore, all three mutants attenuate PRLR-induced Akt and p70S6K activation. Accordingly, PRLR-induced Jak2/Stat5 signaling is inhibited in MCF7 breast cancer cells by Src depletion, expression of SrcK295M/Y527F or active Src harboring an inactive SH2 (SrcR175L) or SH3 domain (SrcW118A). Finally, Jak2/Stat5 pathway is also reduced in Src?/? mice mammary glands. We thus conclude that, in addition to Akt and p70S6K, SFK regulate PRLR-induced Jak2 signaling through a kinase-independent mechanism.  相似文献   

5.
The non-RTK (receptor tyrosine kinase) ACK1 [activated Cdc42 (cell division cycle 42)-associated kinase 1] binds a number of RTKs and is associated with their endocytosis and turnover. Its mode of activation is not well established, but models have suggested that this is an autoinhibited kinase. Point mutations in its SH3 (Src homology 3)- or EGF (epidermal growth factor)-binding domains have been reported to activate ACK1, but we find neither of the corresponding W424K or F820A mutations do so. Indeed, deletion of the various ACK1 domains C-terminal to the catalytic domain are not associated with increased activity. A previous report identified only one major tyrosine phosphorylated protein of 60 kDa co-purified with ACK1. In a screen for new SH3 partners for ACK1 we found multiple Src family kinases; of these c-Src itself binds best. The SH2 and SH3 domains of Src interact with ACK1 Tyr518 and residues 623-652 respectively. Src targets the ACK1 activation loop Tyr284, a poor autophosphorylation site. We propose that ACK1 fails to undergo significant autophosphorylation on Tyr284 in vivo because it is basophilic (whereas Src is acidophilic). Subsequent ACK1 activation downstream of receptors such as EGFR (EGF receptor) (and Src) promotes turnover of ACK1 in vivo, which is blocked by Src inhibitors, and is compromised in the Src-deficient SYF cell line. The results of the present study can explain why ACK1 is responsive to so many external stimuli including RTKs and integrin ligation, since Src kinases are commonly recruited by multiple receptor systems.  相似文献   

6.
The 5-hydroxytryptamine(4) (5-HT(4)) receptors have recently emerged as key modulators of learning, memory, and cognitive processes. In neurons, 5-hydroxytryptamine(4) receptors (5-HT(4)Rs) activate cAMP production and protein kinase A (PKA); however, nothing is known about their ability to activate another key signaling pathway involved in learning and memory: the extracellular signal-regulated kinase (ERK) pathway. Here, we show that 5-HT(4)R stimulation, in primary neurons, produced a potent but transient activation of the ERK pathway. Surprisingly, this activation was mostly PKA independent. Similarly, using pharmacological, genetic, and molecular tools, we observed that 5-HT(4)Rs in human embryonic kidney 293 cells, activated the ERK pathway in a G(s)/cAMP/PKA-independent manner. We also demonstrated that other classical G proteins (G(q)/G(i)/G(o)) and associated downstream messengers were not implicated in the 5-HT(4)R-activated ERK pathway. The 5-HT(4)R-mediated ERK activation seemed to be dependent on Src tyrosine kinase and yet totally independent of beta-arrestin. Immunocytofluorescence revealed that ERK activation by 5-HT(4)R was restrained to the plasma membrane, whereas p-Src colocalized with the receptor and carried on even after endocytosis. This phenomenon may result from a tight interaction between 5-HT(4)R and p-Src detected by coimmunoprecipitation. Finally, we confirmed that the main route by which 5-HT(4)Rs activate ERKs in neurons was Src dependent. Thus, in addition to classical cAMP/PKA signaling pathways, 5-HT(4)Rs may use ERK pathways to control memory process.  相似文献   

7.
Banavali NK  Roux B 《Proteins》2009,74(2):378-389
Regulated activity of Src kinases is critical for cell growth. Src kinases can be activated by trans-phosphorylation of a tyrosine located in the central activation loop of the catalytic domain. However, because the required exposure of this tyrosine is not observed in the down-regulated X-ray structures of Src kinases, transient partial opening of the activation loop appears to be necessary for such processes. Umbrella sampling molecular dynamics simulations are used to characterize the free energy landscape of opening of the hydrophilic part of the activation loop in the Src kinase Hck. The loop prefers a partially open conformation where Tyr416 has increased accessibility, but remains partly shielded. An asymmetric distribution of the charged residues in the sequence near Tyr416, which contributes to shielding, is found to be conserved in Src family members. A conformational equilibrium involving exchange of electrostatic interactions between the conserved residues Glu310 and Arg385 or Arg409 affects activation loop opening. A mechanism for access of unphosphorylated Tyr416 into an external catalytic site is suggested based on these observations.  相似文献   

8.
During neuromuscular synaptogenesis, neurally released agrin induces aggregation and tyrosine phosphorylation of acetylcholine receptors (AChRs) by acting through both the receptor tyrosine kinase MuSK (muscle-specific kinase) and the AChR-associated protein, rapsyn. To elucidate this signaling mechanism, we examined tyrosine phosphorylation of AChR-associated proteins, particularly addressing whether agrin activates Src family kinases bound to the AChR. In C2 myotubes, agrin induced tyrosine phosphorylation of these kinases, of AChR-bound MuSK, and of the AChR beta and delta subunits, as observed in phosphotyrosine immunoblotting experiments. Kinase assays revealed that the activity of AChR-associated Src kinases was increased by agrin, whereas phosphorylation of the total cellular kinase pool was unaffected. In both rapsyn-deficient myotubes and staurosporine-treated C2 myotubes, where AChRs are not clustered, agrin activated MuSK but did not cause either Src family or AChR phosphorylation. In S27 mutant myotubes, which fail to aggregate AChRs, no agrin-induced phosphorylation of AChR-bound Src kinases, MuSK, or AChRs was observed. These results demonstrate first that agrin leads to phosphorylation and activation of AChR-associated Src-related kinases, which requires rapsyn, occurs downstream of MuSK, and causes AChR phosphorylation. Second, this activation intimately correlates with AChR clustering, suggesting that these kinases may play a role in agrin-induced AChR aggregation by forming an AChR-bound signaling cascade.  相似文献   

9.
10.
c-Jun NH(2)-terminal kinase (JNK) is activated by a number of cellular stimuli such as inflammatory cytokines and environmental stresses. Reactive oxygen species also cause activation of JNK; however, the signaling cascade that leads to JNK activation remains to be elucidated. Because recent reports showed that expression of Cas, a putative Src substrate, stimulates JNK activation, we hypothesized that the Src kinase family and Cas would be involved in JNK activation by reactive oxygen species. An essential role for both Src and Cas was demonstrated. First, the specific Src family tyrosine kinase inhibitor, PP2, inhibited JNK activation by H(2)O(2) in a concentration-dependent manner but had no effect on extracellular signal-regulated kinases 1 and 2 and p38 activation. Second, JNK activation in response to H(2)O(2) was completely inhibited in cells derived from transgenic mice deficient in Src but not Fyn. Third, expression of a dominant negative mutant of Cas prevented H(2)O(2)-mediated JNK activation but had no effect on extracellular signal-regulated kinases 1 and 2 and p38 activation. Finally, the importance of Src was further supported by the inhibition of both H(2)O(2)-mediated Cas tyrosine phosphorylation and Cas.Crk complex formation in Src-/- but not Fyn-/- cells. These results demonstrate an essential role for Src and Cas in H(2)O(2)-mediated activation of JNK and suggest a new redox-sensitive pathway for JNK activation mediated by Src.  相似文献   

11.
12.
13.
14.
NO production by macrophages in response to lipoteichoic acid (LTA) and a synthetic lipopeptide (Pam3CSK4) was investigated. LTA and Pam3CSK4 induced the production of both TNF-alpha and NO. Inhibitors of platelet-activating factor receptor (PAFR) blocked LTA- or Pam3CSK4-induced production of NO but not TNF-alpha. Jak2 tyrosine kinase inhibition blocked LTA-induced production of NO but not TNF-alpha. PAFR inhibition blocked phosphorylation of Jak2 and STAT1, a key factor for expressing inducible NO synthase. In addition, LTA did not induce IFN-beta expression, and p38 mitogen-activated protein serine kinase was necessary for LTA-induced NO production but not for TNF-alpha production. These findings suggest that Gram-positive bacteria induce NO production using a PAFR signaling pathway to activate STAT1 via Jak2. This PAFR/Jak2/STAT1 signaling pathway resembles the IFN-beta, type I IFNR/Jak/STAT1 pathway described for LPS. Consequently, Gram-positive and Gram-negative bacteria appear to have different but analogous mechanisms for NO production.  相似文献   

15.
Stress is a part of daily life. However, molecular mechanisms underlying the activation of limbic-hypothalamic-pituitary-adrenal (LHPA) axis remains unknown. In this study, we explored whether activation of the mitogen-activated kinase kinase 4 (MKK4)-c-Jun-N-terminal kinase (JNK) signaling pathway may play a role in the activation of the LHPA axis. We found that forced-swim stress induced elevation of activated MKK4 in the hippocampal formation, amygdala, and hypothalamus. Unlike MKK4, a high basal level of JNK activity is present in many brain areas of unstressed mice. Forced-swim stress significantly elevated JNK activity in the hypothalamus and amygdala and, to a lesser extent, in the cortex, CA1 and CA3 regions, and the dentate gyrus. To further investigate the role of MKK4 and JNK in induction of stress responses, we investigated whether a different stress, namely, restraint stress, induced activation of MKK4 or JNK in the brain. We found that restraint stress also induced elevation of activated MKK4 and JNK in the hippocampal formation, amygdala, and hypothalamus. Because MKK4 and JNK were activated within 5 min following stress, we propose that the MKK4-JNK signaling may be an early neural event in the initiation of neuroendocrine, autonomic and behavioral stress responses.  相似文献   

16.
The present study determined the role of 20-hydroxyeicosatetraenoic acid [20-HETE; produced by omega-hydroxylation of arachidonic acid via cytochrome P-450 (CP450) 4A enzymes] in regulating myogenic activation of skeletal muscle resistance arteries from normotensive (NT) and hypertensive (HT) Dahl salt-sensitive (SS) rats. Gracilis arteries (GA) were isolated from each rat and viewed via television microscopy, and changes in vessel diameter with altered transmural pressure were measured with a video micrometer. Under control conditions, GA from both groups exhibited strong, endothelium-independent myogenic activation. Treatment of GA with 17-octadecynoic acid (17-ODYA; inhibitor of CP450 4A enzymes) did not alter myogenic activation in NT rats, but impaired this response in HT animals. Treatment of GA from HT rats with dibromo-dodecynyl-methylsulfimide (DDMS; inhibitor of 20-HETE production) impaired myogenic activation, as did application of 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid, an antagonist for 20-HETE receptors. Application of iberiotoxin, a Ca(2+)-activated potassium (K(Ca)) channel inhibitor, restored myogenic activation from HT rats treated with DDMS. These results suggest that myogenic activation of skeletal muscle resistance arteries from NT Dahl-SS rats does not depend on CP450, whereas myogenic activation of these vessels in HT Dahl-SS rats is partly a function of 20-HETE production, inhibiting K(Ca) channels through a receptor-mediated process.  相似文献   

17.
18.
The Raf family of serine/threonine protein kinases couple growth factor receptor stimulation to mitogen activated protein kinase activation, but their own regulation is poorly understood. Using phospho-specific antisera, we show that activated Raf-1 is phosphorylated on S338 and Y341. Expression of Raf-1 with oncogenic Ras gives predominantly S338 phosphorylation, whereas activated Src gives predominantly Y341 phosphorylation. Phosphorylation at both sites is maximal only when both oncogenic Ras and activated Src are present. Raf-1 that cannot interact with Ras-GTP is not phosphorylated, showing that phosphorylation is Ras dependent, presumably occurring at the plasma membrane. Mutations which prevent phosphorylation at either site block Raf-1 activation and maximal activity is seen only when both are phosphorylated. Mutations at S339 or Y340 do not block Raf-1 activation. While B-Raf lacks a tyrosine phosphorylation site equivalent to Y341 of Raf-1, S445 of B-Raf is equivalent to S338 of Raf-1. Phosphorylation of S445 is constitutive and is not stimulated by oncogenic Ras. However, S445 phosphorylation still contributes to B-Raf activation by elevating basal and consequently Ras-stimulated activity. Thus, there are considerable differences between the activation of the Raf proteins; Ras-GTP mediates two phosphorylation events required for Raf-1 activation but does not regulate such events for B-Raf.  相似文献   

19.
Activation of the neurotrophin Trk receptors is a key process in the survival and development of the nervous system. The signaling adapters ShcB and ShcC, but not ShcA, are thought to be the primary Shc adaptor proteins in neurons as both are highly expressed in both the developing and adult nervous system. Although a previous study suggested that ShcB and ShcC do not strongly interact with the Trk receptors (1), we find that ShcB and ShcC bind the Trk receptors in a phosphotyrosine-dependent manner via their N-terminal phosphotyrosine binding domain at Tyr(499) (TrkA) and Tyr(515) (TrkB), they are tyrosine-phosphorylated in response to neurotrophin stimulation, and they enhance the activation of mitogen-activated protein kinase in Trk-expressing cells. Moreover, neurotrophin treatment of primary cortical neurons stimulates ShcB/ShcC-Trk interaction and the tyrosine phosphorylation of ShcB/ShcC, indicating that they are bona fide targets of the Trk receptors in vivo. Interestingly, two proteins (pp60 and pp75) co-immunoprecipitate with ShcB and ShcC in response to neurotrophin stimulation in primary cortical neurons, suggesting a potential role of these unknown targets in neurotrophin signaling. Collectively, these results demonstrate that ShcB and ShcC, and their co-immunoprecipitating proteins, are activated by the Trk receptors in primary neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号