首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
红壤旱坡地桔园覆盖的生态效应及经济效益评价   总被引:11,自引:2,他引:9  
柑桔是南方红壤地区栽培的主要果树种类,栽培面积达1126×106hm2。柑桔是一种常绿果树,生长量大,挂果期长,周年需要消耗大量的水分。我国南方红壤地区虽然雨水充沛,但降水季节分布不均,柑桔果实迅速生长的7~10月正是该地区雨水少、蒸发量大的伏秋干旱季节。经常性的伏秋干旱是制约我国柑桔产量和质量进一步提高的主要障碍因素之一。桔园夏秋进行秸秆覆盖可以降温[1]、保水[2]、防止杂草生长[3]等,但桔园应用地膜覆盖及常年连续覆盖对桔园的生态效应方面的研究较少,为此我们开展了这方面的工作,并通过连续3a的产量及产值分析覆盖桔园的经…  相似文献   

2.
We counted songbirds in crops planted on shooting estates specifically for game management purposes on farmland in Britain and elsewhere in Europe. Winter game crops provide cover and feed areas for pheasants Phasianus colchicus and red-legged partridge Alectoris rufa, while summer game crops are designed to provide brood-rearing cover for these species. In central and southern England, 30 plots of winter game crops, either kale, quinoa or cereal up to 2 ha in area, and 30 adjacent arable-field plots, were surveyed for birds up to six times at monthly intervals during the winter 1997–1998. In the Scottish lowlands, six plots of summer game crops up to 4 ha in area, and adjacent arable fields were surveyed in summer 1999 or 2000. The winter game plots contained more than ten songbirds per hectare in most months, while the adjacent arable-field plots contained less than one. In all three winter game crop types, songbird numbers declined significantly in the second half of the winter while numbers in the arable fields did not. Of the 26 species recorded in the winter game crops, 10 have undergone rapid decline over the last 30 years. Considering these declining species alone, the winter game crops still contained more individuals than the adjacent arable fields throughout the winter. Densities in both the kale and quinoa were higher than in the cereal game crop. The six summer game crops sampled in mid-summer contained on average 2.9 songbirds per hectare, while the adjacent arable fields contained 0.4. Of the 14 species recorded in these summer game crops, eight have undergone rapid or moderate declines over the last 30 years. Although winter and summer game crops are planted in relatively small plots and hence concentrate birds, these plots are widely planted and our results suggest that they benefit birds on farmland.  相似文献   

3.
本文报道1988年和1989年春夏之际异常和正常的桔园小气候环境对柑桔树开花结果物候期、抽梢生长、幼果发育、生理落果、当年果实产量和品质等性能的影响。结果表明,柑桔树的座果率受许多生态生理因素制约,但第一次生理落果主要与开花期桔园的小气候环境有关,第二次生理落果则与树体营养生理代谢密切相关。据此提出了预测预报柑桔树第二次生理落果的指标及其防御措施。  相似文献   

4.
The monthly patterns of aboveground biomass allocation were studied in the branches of six Mediterranean sub-shrubs with different leaf phenology. Four of them were seasonally dimorphic species, and the remaining two were a winter deciduous and a cushion plant with photosynthetic stems. By the analysis of these species we aimed to identify different aboveground biomass allocation patterns within seasonally dimorphic species and to understand the role of seasonal dimorphism as a strategy to avoid the main stresses of mediterranean climate: summer drought and winter cold. The biomass allocation to the different living and photosynthetic fractions of 3-year-old branches was studied monthly for a minimum of 13 months per species. Leaf area (LA, mm2) and leaf mass per area (LMA, mg cm−2) measurements were used to characterize the diverse types of leaves of each species. Standing dead and senescent tissues accounted for a great percentage of the branch biomass of seasonally dimorphic species both during summer and winter. Different patterns of photosynthetic biomass allocation were found within the seasonally dimorphic species analysed. These patterns ranged from the moderate photosynthetic biomass oscillation of Salvia lavandulifolia to the almost deciduousness of Lepidium subulatum, and they were achieved by keeping alive, drying out or shedding different types of branches and leaves throughout the year. The formation of stress tolerant leaves and the reduction in the amount of photosynthetic biomass responded both to the occurrence of summer drought and winter cold. These results demonstrate that seasonal dimorphism is a flexible ecological strategy, as it comprises very different leaf phenologies and enables plants to escape both summer drought and winter cold.  相似文献   

5.
? Premise of the study: Viola hondoensis is a perennial herb that inhabits the understory of temperate, deciduous forests. It is an evergreen plant with a leaf life span that is shorter than a year. Its summer leaves are produced in spring and shed in autumn; winter leaves are produced in autumn and shed in spring. Here we asked why the plant sheds its winter leaves in spring, though climate conditions improve from spring to summer. We proposed four hypotheses for the cause of shedding: (1) changes in seasonal environment such as day length or air temperature, (2) shading by canopy deciduous trees, (3) self-shading by taller summer leaves, and (4) competition for nutrients between summer and winter leaves. ? Methods: To test these hypotheses, we manipulated the environment of winter leaves: (1) plants were transplanted to the open site where there was no shading by canopy trees. (2) Petioles of summer leaves were anchored to the soil surface to avoid shading of winter leaves. (3) Sink organs were removed to eliminate nutrient competition. ? Key results: Longevity of winter leaves was extended when shading by summer leaves was eliminated and when sink organs were removed, but not when plants were transplanted to the open site. ? Conclusion: We conclude that the relative difference in light availability between summer and winter leaves is a critical factor for regulation of leaf shedding, consistent with the theory of maximization of the whole-plant photosynthesis.  相似文献   

6.
Grasshopper assemblages were sampled in 44 plots in each of three adjacent sites in a 40-year-old southern tall grassland experimental area in South Africa. Specific plots received particular mowing and/or burning treatments over the 40-year period. Grasshopper responses to vegetation type, and to different burning and mowing practices, were site-specific, despite the close proximity of sites. This suggests that grasshopper assemblage composition is not entirely deterministic and depends on the trajectory of plant succession. Grasshopper species richness and abundance decreased from annually to triennially burnt plots, and increased in plots mown once per year to plots mown three times per year. Burning in the first week of August (winter) was more favourable for grasshopper assemblages than burning in autumn or after the first spring rains. Mean grasshopper species richness was highest in plots mown after the first spring rains, and the mean number of individuals was highest i n plots mown early in summer. When annually burnt plots were compared with annually mown plots, grasshopper abundance and species richness were highest in the burnt plots. A rotational winter burning programme, which is practical under African conditions, is recommended for the conservation of grasshoppers and other invertebrates.  相似文献   

7.
Anastrepha ludens (Loew) (Diptera: Tephritidae) is one of the most important citrus pest in Mexico. The sterile insect technique (SIT) is used against pest populations of fruit flies for suppression, eradication, containment and prevention to reduce damages in fruit‐growing areas. In this study, we analyzed the seasonal variation of captures and field distribution of sterile A. ludens released in different seasons of the year in north‐eastern Mexico. Chilled releases were conducted by air at constant densities per ha on a citrus area for a period of 32 weeks that included the coldest and warmest seasons that is winter, spring and summer. Multilure traps baited with torula yeast pellets were used to capture sterile flies. Fly capture data were compared over the three seasons and correlated with climate. The lowest number of captures of the sterile insect occurred in the summer and the highest in winter and spring. High and low temperatures were negatively correlated with fly captures. Field distribution was also negatively correlated with high temperatures in summer, but no relationships were observed in winter and spring. No relationships were observed between rainfall with capture and field distribution of sterile flies. These results indicate that summer is a season involving agro‐ecological and environmental constraints for the capture and field distribution of sterile flies. This study may be useful for enhancing release strategies and optimizing economic resources in north‐eastern Mexico. Further research on the behaviour of sterile flies under stressful environments is suggested.  相似文献   

8.
Mature leaves are the primary source of sugars, which give rise to many secondary metabolites required for plant survival under adverse conditions. In order to study the interaction of field‐grown cork oak (Quercus suber L.) with the environment, we investigated the seasonal variation of minerals and organic metabolites in the leaves, using inductively coupled plasma atomic emission spectrometry, elemental analysis and nuclear magnetic resonance spectrometry. Statistical analysis showed that the data strongly correlated with seasonal climate and were divided in three groups corresponding to: (1) spring‐early summer, (2) summer and (3) autumn‐winter. The concentration of N, P, K and leaf ash content were highest in spring (recently formed leaves), reached the minimum during the hot and dry summer and increased slightly during the rainy period of autumn‐winter. Conversely, Na, Mg and Ca concentrations were lowest in spring‐early summer and increased during summer and autumn‐winter, the Ca concentration increasing five‐fold. Two cyclitol derivatives, quinic acid and quercitol were the major organic metabolites of the leaves. Their concentration along the season followed opposite trends. While quinic acid predominated during spring‐early summer, when it contributed 12% to the leaf osmotic potential, quercitol was predominant during autumn‐winter, when its contribution to leaf osmotic potential was about 10%. This different preponderance of the two compounds is expressed by the quercitol/quinic acid ratio, which can be as low as 0.2 in early summer and as high as 9 in winter. Sucrose and glucose concentrations also increased during autumn‐winter. Evidence for the quercitol protective role in plants during stress is discussed, and on the basis of structural similarity, it is suggested that quinic acid could have an identical importance, with a protective role against heat and high irradiance. It is concluded that the marked changes in Q. suber leaf composition throughout the year could have important implications in the plant capacity to endure climatic stress.  相似文献   

9.
Wheat, cotton, and peanut were arranged in three cropping sequences to determine the effects of fenamiphos (6.7 kg a.i./ha) and cropping sequence on nematode population densities and crop yields under conservation tillage and irrigation for 6 years. The cropping sequences included a wheat winter cover crop each year and summer crops of cotton every year, peanut every year, or cotton rotated every other year with peanut. The population densities of Meloidogyne spp. and Helicotylenchus dihystera were determined monthly during the experiment. Numbers of M. incognita increased on cotton and decreased on peanut, whereas M. arenaria increased on peanut, and decreased on cotton; both nematode species remained in moderate to high numbers in plots of wheat. Root damage was more severe on cotton than peanut and was not affected by fenamiphos treatment. The H. dihystera population densities were highest in plots with cotton every summer, intermediate in the cotton-peanut rotation, and lowest in plots with peanut every summer. Over all years and cropping sequences, yield increases in fenamiphos treatment over untreated control were 9% for wheat, 8% for cotton, and 0% for peanut. Peanut yields following cotton were generally higher than yields following peanut. These results show that nematode problems may be manageable in cotton and peanut production under conservation tillage and irrigation in the southeastern United States.  相似文献   

10.
A field experiment was conducted to examine the effects of habitat fragmentation on herbivore damage to individually tagged leaves of Betonica officinalis rosettes. Fragments of different size and corresponding control plots were established at three study sites in nutrient-poor calcareous grasslands in the northern Swiss Jura mountains. Leaf damage was recorded three times over the growing season (late spring, summer and early autumn). Five years after the initiation of the fragmentation, the density of rosettes did not differ between fragments and control plots. The number of leaves per rosette was higher in fragments than in control plots in summer but not in late spring and early autumn. The extent of leaf damage, expressed as proportion of leaf area removed by invertebrate herbivores, increased over the vegetation period. Leaf damage was greater in fragments than in control plots at two study sites, whereas the opposite (less strongly expressed) was found at the third site. Number of species and density (individuals per m2) of potential herbivores (gastropods and grasshoppers) were recorded in all fragments and control plots. Effects of fragmentation on the number of species and densities depended on plot size and differed between gastropods and grasshoppers. Leaf damage in fragments increased with increasing density of gastropods if the third site, which had lowest leaf damage, was excluded. Such a positive relationship was neither found in control plots nor for grasshopper densities. Thus, movement of gastropods in fragments was probably restricted which resulted in increased feeding pressure at least in two sites. However, even if our fragmentation experiment was well designed and replicated, the interpretation of these experimental results remains difficult because there was large site-to-site and seasonal variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号