首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Protozoan communities in chalk streams   总被引:2,自引:2,他引:0  
This study assessed the individual effects of three mayflies (Paraleptophlebia sp., Ephemerella subvaria McDunnough and Epeorus sp.) and one caddisfly (Psilotreta sp.) on periphyton communities associated with clay tiles and leaves. Algal densities were estimated for leaf discs and tiles from experimental chambers (with individual grazers) and control chambers (i.e., no grazers). Scanning electron micrographs (SEM) of leaf discs and tiles also were taken for all mayfly grazing experiments. Densities of algae on leaf discs were two to five times lower than on tiles. Mouthpart morphology influenced how different insects grazed the periphyton community. Paraleptophlebia had typical collector-gatherer mouthparts and had no effect on diatom densities associated with leaves whereas diatom densities on grazed tiles were higher than densities on tiles from control chambers. Epeorus had brusher mouthparts and had little impact on diatom densities regardless of substratum type. The other two grazers had the blade-like mandibles of a scraper. Psilotreta did not reduce the numerical abundance of diatoms on either substratum, but did alter community structure by significantly reducing densities of stalked Gomphonema olivaceum and large species of Navicula and Nitzschia; densities of smaller diatoms (Achnanthes spp) increased. However, E. subvaria reduced densities of most algal species regardless of size on both substrata and also significantly altered community structure. SEMs of substrata grazed by mayflies showed reductions in fungal hyphae on all grazed leaf discs, decreases in filamentous algal forms on grazed tiles, and greatly shortened stalks of G. olivaceum (Paraleptophlebia only). Thus, periphyton communities are different on leaves versus tiles and grazers with different mouthpart morphologies have varying effects on both algal and heterotrophic microbial community structure.  相似文献   

2.
1. We investigated the effects of local disturbance history and several biotic and abiotic habitat parameters on the microdistribution of benthic invertebrates after an experimental disturbance in a flood‐prone German stream. 2. Bed movement patterns during a moderate flood were simulated by scouring and filling stream bed patches (area 0.49 m2) to a depth of 15–20 cm. Invertebrates were investigated using ceramic tiles as standardized substrata. After 1, 8, 22, 29, 36 and 50 days, we sampled one tile from each of 16 replicates of three bed stability treatments (scour, fill and stable controls). For each tile, we also determined water depth, near‐bed current velocity, the grain size of the substratum beneath the tile, epilithic algal biomass and standing stock of particulate organic matter (POM). 3. Shortly after disturbance, total invertebrate density, taxon richness and density of the common taxa Baetis spp. and Chironomidae were highest in stable patches. Several weeks after disturbance, by contrast, Baetis spp. and Hydropsychidae were most common in fill and Leuctra spp. in scour patches. The black fly Simulium spp. was most abundant in fill patches from the first day onwards. Community evenness was highest in scour patches during the entire study. 4. Local disturbance history also influenced algal biomass and POM standing stock at the beginning of the experiment, and water depth, current velocity and substratum grain size throughout the experiment. Scouring mainly exposed finer substrata and caused local depressions in the stream bed characterized by slower near‐bed current velocity. Algal biomass was higher in stable and scour patches and POM was highest in scour patches. In turn, all five common invertebrate taxa were frequently correlated with one or two of these habitat parameters. 5. Our results suggest that several ‘direct’ initial effects of local disturbance history on the invertebrates were subsequently replaced by ‘indirect’ effects of disturbance history (via disturbance‐induced changes in habitat parameters such as current velocity or food).  相似文献   

3.
Synopsis We experimentally manipulated fish grazing pressure to determine whether fish herbivory played an important role in the structure of a Costa Rican stream. Non-planktonic plant matter represented a significant percentage ( 25%) of the diet of 77% of the 17 fish species in the community. We prevented fish grazing on macrophytes, tree leaves, and periphyton using fish exclusion cages. Fish grazedPanicum sp., used as a generalized aquatic macrophyte, to the stems after 6 days in control areas, and consumed all or much ofFicus insipida andMonstera sp. leaves when placed in the stream after 48 hours. Plants and leaves experimentally protected by cages remained intact. In periphyton studies, fifty percent more ash free dry weight occurred on 25 × 25 cm floor tiles protected from fish grazing by cages than on tiles in roofless controls exposed to fish grazing for 19 days, suggesting a reduction in periphyton biomass. These results demonstrate that fish herbivory affects macrophyte abundance, and impacts the amount of leaf litter in the stream. Fish herbivory may also have an important effect on overall periphyton biomass. Herbivorous fish species generally represent a larger proportion of the total fish community in tropical compared to temperate streams; thus fish grazing is more likely to have an important influence on plant and animal abundances and distributions in tropical streams.  相似文献   

4.
Periphyton colonization of natural rock surfaces and granite tiles was followed experimentally in the Matamek River, an acidic (pH 5.5) sixth order boreal stream in northeast Quebec, Canada. Accumulation of chlorophyll a and freshweight algal biomass was logarithmic over a 25 day colonization period. The major colonizers were Tabellaria flocculosa (Roth) Kütz., T. fenestrata (Lyngb.) Kütz., Mougeotia sp., and Eunotia pectinalis (Kütz) Rabh., and its varieties. The microcolonization sequence on granite tiles, followed over 27 days with scanning electron microscopy, showed an initial accumulation of algal cells on the upstream and downstream margins and in depressions, followed by a gradual filling-in of the flat surfaces. It is hypothesized that the observed slow rate of colonization was due to the high surface tension of the granite substratum and the absence of preconditioning by an organic film. It is further hypothesized that the increase in cellular carbon fixation rates of T. flocculosa measured over a 23 day period using nuclear track autoradiography parallels the development of an algal-detrital microcosm on the granite tile, and is evidence for the establishment of localized tight nutrient spiralling. It is suggested that the periphyton community may be regarded as a nutrient recycling system at a microenvironmental level which may be especially important in oligotrophic systems.  相似文献   

5.
The development of periphyton community structure by exchange of organisms between substratum and water column (noninteractive mechanism) and by interspecific competition for surface (interactive mechanism) was studied during seasonal succession in Akulovsky water supply channel (the Upper Volga basin). The influence of exchange was assumed by similarity between the species composition of plankton and periphyton. At early stages of succession when the diatoms dominated in periphyton the community was formed mainly by phytoplankton sedimentation, while the competition for substratum didn't result in decrease of species diversity because the poor competitors were partly displaced by new colonists from the water column. Later when the green filamentous algae abundantly developed in periphyton, their numbers were probably controlled by factors not related to exchange of propagules. At the same time, the species structure of secondary periphyton cover developing on the thallus of filamentous algae depended mainly on the plankton sedimentation. At the last stages of seasonal succession when periphyton was represented by colonies of cyanobacteria and diatoms closely covering the substratum, the exchange of organisms between substratum and water column was not so important as interspecific competition for surface. As one could suppose, increase in biomass in this period resulted in the decrease of specificity as it was predicted by hypothesis of interactive community. In such a way, both mechanisms (interactive and noninteractive ones) took part in development of periphyton structure. Their relative influence changed in the course of seasonal succession.  相似文献   

6.
Settlement tiles were used to characterise and quantify coral reef associated algal communities along water quality and herbivory gradients from terrestrial influenced near shore sites to oceanic passage sites in Marovo Lagoon, the Solomon Islands. After 6 months, settlement tile communities from inshore reefs were dominated by high biomass algal turfs (filamentous algae and cyanobacteria) whereas tiles located on offshore reefs were characterised by a mixed low biomass community of calcareous crustose algae, fleshy crustose algae and bare tile. The exclusion of macrograzers, via caging of tiles, on the outer reef sites resulted in the development of an algal turf community similar to that observed on inshore reefs. Caging on the inshore reef tiles had a limited impact on community composition or biomass. Water quality and herbivorous fish biomass were quantified at each site to elucidate factors that might influence algal community structure across the lagoon. Herbivore biomass was the dominant driver of algal community structure. Algal biomass on the other hand was controlled by both herbivory and water quality (particularly dissolved nutrients). This study demonstrates that algal communities on settlement tiles are an indicator capable of integrating the impacts of water quality and herbivory over a small spatial scale (kilometres) and short temporal scale (months), where other environmental drivers (current, light, regional variability) are constant.  相似文献   

7.
Russell G. Death 《Oikos》2002,97(1):18-30
The link between substrate disturbance and stream invertebrate species richness is often complicated by the fact that substrate disturbance removes both invertebrates and periphyton (a potential food source). It is never clear whether disturbance acts directly on species diversity by removing animals or indirectly by reducing one of their food sources. To examine this relationship invertebrate diversity patterns were examined in 25 forest streams in Urewera National Park, New Zealand, where light attenuation from the forest canopy was postulated to limit periphyton biomass and remove the confounding influence of periphyton on the link between substrate disturbance and invertebrate diversity. Invertebrate species richness declined linearly with increasing substrate disturbance. Although periphyton biomass was comparatively low, species richness was more strongly related to periphyton biomass than to any disturbance measure. The highly mobile nature and terrestrial reproductive stage of many lotic invertebrates suggest that colonisation dynamics may have a more important influence on diversity patterns than monopolisation of resources for population growth. Although both the intermediate disturbance hypothesis and the dynamic equilibrium model encompass colonisation as a critical determinant of diversity both models also require a trade-off between the colonising and competitive ability of individual species; a phenomenon which does not appear to occur widely in lotic communities. Rather, it is postulated that resource levels will set an upper limit to the species richness of a benthic community that can be achieved through colonisation of taxa in the absence of disturbance, while disturbance removes taxa and resets the colonisation process.  相似文献   

8.
Periphyton communities are an ecologically important source of information when conducting experimental stream ecotoxicological studies. Experimental stream studies often utilize unreplicated systems in order to understand dose-response phenomena. The objective of this study was to examine the robustness of such a dose-response investigation. Autotrophic and heterotrophic periphyton were evaluated in replicated control experimental streams with open recruitment (once-through flow design). Measurements of population and community structure and community function over an eleven week colonization period were made on unglazed clay tile and cobble substrata. Several measures were significantly different during the study; however, most of these were a result of initial stochastic colonization events or associated with relatively rare algal populations. During the latter half of the study autotrophic and heterotrophic community measurements on tile and cobble substrata displayed similar trends in both control streams. Population and community metrics were significantly different for approximately 5% of the 400 measurements made after the initial sampling. These results strongly suggest that the driving forces behind structuring aquatic population and community responses will be test chemical exposure and not spuriously developed stream ecosystems with individual trajectories. Recruitment in these open systems is evenly distributed across the replicated experimental stream ecosystems.  相似文献   

9.
Effects of the triazine herbicides simazine and terbutryn on total biovolume and community structure of haptobenthic periphytic algal communities within in situ marsh enclosures are described. Levels of biovolume inhibition in excess of 98% relative to an untreated control were observed at all levels of terbutryn tested (0.01, 0.1 and 1.0 mg l–1). No reduction in total biovolume was observed at 0.1 mg l–1 simazine, with increasing inhibition (to 98%) at 1.0 and 5.0 mg l–1. Following incidental enclosure flooding and removal of herbicide, increases in biovolume were observed in all but the highest treatment levels, with rates of colonization similar to that of the control.Pre-flood community structure of periphyton in simazine-treated enclosures was qualitatively similar to that of the control, while a small blue-green alga was abundant only in terbutryn-treated enclosures. After flooding, substratum colonization in most experimental enclosures was dominated by the diatom Cocconeis placentula, while this taxon accounted for about 25% of total biovolume on substrata from the control and 0.1 mg l–1 simazine enclosures. It is concluded that periphyton successional processes, which normally lead to the development of a complex 3-dimensional mat, may be averted by short herbicide exposures.  相似文献   

10.
The design and performance of a simple, community level ecotoxicological testsystem is reported. Samples of periphyton communities, established on artificial substratum in natural streams were used to study effects on photosynthetic activity in short-term experiments. Photosynthesis was measured as light-dependent oxygen evolution or as 14CO2-incorporation. The variability in photosynthetic activity between samples collected at the same time, expressed as coefficient of variation, was ca 20%. The variation in sensitivity of periphyton photosynthesis as dependent on sampling season was less than threefold for the two long-chained aliphatic amines and the textile industry effluent studied. Effects of the amines on periphyton from five different streams were also investigated. The ratio between maximum and minimum values of sensitivity was 5.6. It is concluded that the variation in sensitivity between different periphyton communities is similar to or less than that observed for fresh-water algal species. Some advantages with regard to ecological realism of using periphyton communities as test systems are discussed.  相似文献   

11.
Rising levels of ultraviolet radiation (UVR) striking the Earth's surface have led to numerous studies assessing its inhibitory effects on phytoplankton and periphyton in aquatic systems. Mineral nutrients such as nitrogen (N) and phosphorus (P) have been shown to increase aspects of algal metabolism and compensate for UVR inhibition. An in situ substratum enrichment technique and UV shielding was used to assess the effects of nutrient additions on periphyton exposed to different levels of UVR in Castle Lake, California during July‐August, 1997. UV shielding had no effect on total periphyton biomass, but caused shifts in species composition. The dominant periphyton species, Anabaena circinalis RAB., demonstrated sensitivity to ambient levels of UV radiation possibly due to UV inhibition of N2 ‐fixation. Total diatom biovolume decreased when shielded from UVR. Phosphorus additions continually elicited an increase in periphyton biovolume at all levels of analysis. These results suggest an interaction between nutrient status/availability and UV sensitivity.  相似文献   

12.
Periphyton plays an important role in stream ecology, and can be sensitive to macroinvertebrate grazers, near-bed current velocity, and bedload abrasion. We manipulated conditions to examine influences on periphytic accrual in the St. Anthony Falls Laboratory Outdoor StreamLab in Minneapolis, MN, USA. Macroinvertebrate grazers were excluded from 27 of 65 clay tiles using electric pulses. We examined periphytic biomass accrual as a function of grazer presence, sampling run, and near-bed current velocity using ANCOVA. We found significant temporal differences between sampling runs but no significant effect of grazer presence. Along with a strong association between bedload transport rates and mean periphytic biomass, our results suggest that grazers are relatively unimportant in stream systems with high levels of physical disturbance from floods and associated sand bedload. However, the interaction between grazer presence and velocity was marginally significant. Regression analyses showed no relation between velocity and periphyton in the absence of grazers but a negative relation when grazers were present, suggesting that mechanical dislodgement of periphyton by grazers may increase with velocity. We conclude that grazers can have subtle effects on periphyton, particularly in streams with high bedload transport rates.  相似文献   

13.
Benthic consumers influence stream ecosystem structure and function, but these interactions depend on environmental context. We experimentally quantified the effects of central stoneroller minnows (Campostoma anomalum (Rafinesque) and Meek’s crayfish (Orconectes meeki meeki (Faxon)) on benthic communities using electric exclusion quadrats in Little Mulberry Creek before (June) and during (August) seasonal stream drying. Unglazed ceramic tiles were deployed in June and August to measure periphyton and invertebrate abundance, and leafpack decomposition and primary production were also measured in August. Relationships between stoneroller and crayfish density and the size of consumer effects were evaluated with multiple linear regression models. Average chlorophyll a abundance was greater on exposed than exclusion tiles in August, but not in June. Sediment dry mass, periphyton ash-free dry mass (AFDM), and chironomid densities on tiles did not differ among treatments in either period. Leaf packs decayed faster in exposed than exclusion treatments (k exposed = 0.038 ± 0.013, k exclusion = 0.007 ± 0.002), but consumer effects were stronger in some pools than others. Leafpack invertebrate biomass and abundance and tile primary productivity did not differ among treatments. Consumer effects on chlorophyll a were related to crayfish and stoneroller density, and effects on chironomid density were related to stoneroller density. These results contrast with a previous exclusion experiment in Little Mulberry Creek that demonstrated strong consumer effects. The influence of stream drying on consumer effects appears to have been reduced by strong spates, underscoring the importance of conducting multi-year studies to determine the magnitude of variability in ecological interactions.  相似文献   

14.
为全面了解着生藻类在建群中群落变化的生态学特性,揭示着生藻类的建群规律,在以丝状藻类为优势藻的生态塘中,采用花岗岩和瓷砖为附着材料,设置水体底部和中部为附着位点,进行频次为10d的采样分析。结果表明,生态塘中共检出8门73属117种着生藻类,其中以硅藻、蓝藻、绿藻为优势类群。同时不同人工基质和不同空间层次条件下着生藻类的建群特征较一致,早期以单细胞硅藻如舟形藻(Navicula sp.)、脆杆藻(Fragilaria sp.)、曲壳藻(Achnanthes sp.)等为优势,后期以丝状藻类如鞘丝藻(Lyngbya sp.)、颤藻(Oscillatoria sp.)、伪鱼腥藻(Pseudanabaena sp.)等为优势;研究结果发现不同人工基质(花岗岩和瓷砖)对着生藻类的种类组成、细胞密度、生物量和藻类多样性无显著影响,花岗岩和瓷砖上附着的着生藻类具有较高的相似性;但不同的空间层次对着生藻类建群特征影响明显,水体底部具有更多的硅藻种类数,中部具有更多的绿藻,随着建群时间的发展,蓝藻比例不断增加;就生物量而言,底部的着生藻类叶绿素a显著高于水体中部,但两者的细胞密度无显著性差异;随着建群过程的发展,水体底部的着生藻类生物量达峰值所需的时间比中部更长。通过相关性分析,生态塘中着生藻类的生长主要受总磷的影响。  相似文献   

15.

This study examines the effects of elevated CO2 on the benthic biology of a temperate freshwater stream. We tested the hypotheses that elevated CO2 would increase periphyton biomass, alter elemental composition, and change community composition by increasing the frequency of algal taxa most limited by CO2 availability. Carbon dioxide was bubbled into reservoirs of stream water, increasing the ambient pCO2 by approximately 1100 ppm. The CO2-enriched water then flowed into artificial stream channels. Ceramic tiles were placed into the channels to allow for periphyton colonization. Dissolved inorganic carbon increased and pH decreased with added CO2. Measurements of biological parameters including periphyton biomass, algal C:N:P ratios, and community composition suggest that the periphyton were unaffected by the changes in stream water chemistry. We infer that rising atmospheric CO2 will impact stream water chemistry but that periphyton may not be the first to respond to these changes. Impacts to alkaline freshwater streams from elevated CO2 initially may be due to changes to terrestrial inputs that affect microbial decomposition and grazer activity, rather than through increases in periphyton carbon fixation. However, environmental characteristics of freshwater systems vary considerably, and additional studies are needed for accurate predictive modeling and monitoring of the effects of increasing atmospheric CO2 on freshwater streams.

  相似文献   

16.
1. The roles of nutrients, disturbance and predation in regulating consumer densities have long been of interest, but their indirect effects have rarely been quantified in wetland ecosystems. The Florida Everglades contains gradients of hydrological disturbance (marsh drying) and nutrient enrichment (phosphorus), often correlated with densities of macroinvertebrate infauna (macroinvertebrates inhabiting periphyton), small fish and larger invertebrates, such as snails, grass shrimp, insects and crayfish. However, most causal relationships have yet to be quantified. 2. We sampled periphyton (content and community structure) and consumer (small omnivores, carnivores and herbivores, and infaunal macroinvertebrates inhabiting periphyton) density at 28 sites spanning a range of hydrological and nutrient conditions and compared our data to seven a priori structural equation models. 3. The best model included bottom‐up and top‐down effects among trophic groups and supported top‐down control of infauna by omnivores and predators that cascaded to periphyton biomass. The next best model included bottom‐up paths only and allowed direct effects of periphyton on omnivore density. Both models suggested a positive relationship between small herbivores and small omnivores, indicating that predation was unable to limit herbivore numbers. Total effects of time following flooding were negative for all three consumer groups even when both preferred models suggested positive direct effects for some groups. Total effects of nutrient levels (phosphorus) were positive for consumers and generally larger than those of hydrological disturbance and were mediated by changes in periphyton content. 4. Our findings provide quantitative support for indirect effects of nutrient enrichment on consumers, and the importance of both algal community structure and periphyton biomass to Everglades food webs. Evidence for top‐down control of infauna by omnivores was noted, though without substantially greater support than a competing bottom‐up‐only model.  相似文献   

17.
1. Macroinvertebrate densities and community composition were examined at three spatial scales after substratum disturbance; among reaches along a longitudinal gradient, within reaches and within plots. Reaches consisted of sandstone outcrops that were separated by approximately 2 km of highly mobile sandy silt substratum. 2. Substrata were disturbed by scraping sandstone plots (0.3 ± 0.3 m). Body-sized depressions created by Trichoptera in the sandstone were removed along with the upper 5 mm of sandstone, resulting in areas of newly exposed, smooth sandstone. 3. The spatial scale of examination determined whether patterns of macroinvertebrate distribution and densities were discernible. Initially there were no significant differences in community composition or total densities among reaches or among upstream/ downstream locations within reaches. Following substratum disturbance and 30 days recolonizarion, total macroinvertebrate densities did not differ significantly between undisturbed plots and disturbed plots. However, densities of Petrophilia (Pyralidae: Lepidoptera) differed along the longitudinal gradient and the Simuliidae had its highest density in the upstream reach. Significant differences were found in total macroinvertebrate densities between the upstream and the downstream halves of disturbed plots, with higher densities occurring in the downstream portions. 4. Recolonized plots had similar macroinvertebrate densities and community composition to undisturbed plots, suggesting that the stream community was highly resilient.  相似文献   

18.
19.
1. Pacific salmon (Oncorhynchus spp.) returning to streams deliver substantial quantities of nutrients (nitrogen and phosphorus) that may stimulate primary production. Salmon can also affect the phytobenthos negatively via physical disturbance during nest excavation, a process that may counteract the positive effects of salmon‐derived nutrients on benthic algae. The ability of salmon to disturb benthic habitats may be a function of substratum particle size, and therefore, the geomorphology of streams could determine the net effect of salmon on benthic communities. 2. Based on surveys of 17 streams in southwest Alaska before the salmon run and during peak salmon density, we identified size thresholds for the disturbance of substratum particles by salmon and classified particles as vulnerable (<60 mm B‐axis), invulnerable (>110 mm) or transitional (61–110 mm). At the scale of individual rocks, algal biomass on vulnerable substrata decreased at peak spawning (relative to values before the run) as a power function of salmon density; transitional and invulnerable substrata showed no quantifiable pattern. However, invulnerable substrata in streams with more than 0.11 salmon m?2 showed net algal accrual, or relatively smaller declines in algal biomass, than vulnerable substrata, indicating that large rocks provide refuge for benthic algae from salmon disturbance. 3. We expected that streams with proportionally larger rocks would respond positively to salmon at the whole‐stream scale, after accounting for the relative abundance of rocks of different sizes within streams. Invulnerable rocks made up only 0–12% of the total substratum particle size distribution in salmon‐bearing streams, however, and algal accrual on invulnerable substrata did not outweigh the strong disturbance effects on the more spatially extensive vulnerable substrata. The change in whole‐stream benthic algal biomass among streams was negatively related to salmon density. 4. Stable isotopes of nitrogen (δ15N) were used to track nutrients from salmon into benthic biota. Periphyton δ15N on rocks of all size classes was higher at peak salmon spawning than before the salmon run, indicating the uptake of salmon‐derived nitrogen. Peak δ15N values were positively related to salmon abundance and followed a two‐isotope mixing relationship. The per cent of N from salmon in periphyton was also related to salmon density and was best explained by a saturating relationship. Spring δ15N was unrelated to salmon returns in the previous year, suggesting little annual carryover of salmon nutrients.  相似文献   

20.
SUMMARY. 1. Field experiments were conducted to examine the impact of grazing invertebrates on periphyton biomass in twenty-one pools across three northern California coastal streams (U.S.A.): Big Sulphur Creek, the Rice Fork of the Eel River, and Big Canyon Creek. Periphyton accrual on artificial substrate tiles was compared in each stream between two treatments: those elevated slightly above the stream bottom to reduce access by grazers (= platforms) and those placed directly on the stream bottom to allow access by grazers (=controls).
2. Crawling invertebrate grazers (cased caddisflies and snails) were numerically dominant in each stream (86% of all grazers in Big Sulphur Creek, 61% in the Rice Fork, 84% in Big Canyon Creek). Platforms effectively excluded crawling grazers, but were less effective in excluding swimming mayfly grazers (Baetidae).
3. Periphyton biomass (as AFDM) on tiles was significantly lower on controls compared to platforms for the Rice Fork, an open-canopy stream, and Big Sulphur Creek, a stream with a heterogeneous canopy. In contrast, no grazer impact was found for Big Canyon Creek, a densely shaded stream. Here, extremely low periphyton biomass occurred for both treatments throughout the 60 day study.
4. The influence of riparian canopy on periphyton growth (i.e. accrual on platforms), grazer impact on periphyton, and grazer abundance was examined for Big Sulphur Creek. As canopy increased (15–98% cover), periphyton biomass on platforms decreased. In contrast, canopy had little influence on periphyton accrual on controls; apparently, grazers could maintain low periphyton standing crops across the full range of canopy levels. The abundance of one grazer species, the caddisfly Gumaga nigricula , was highest in open, sunlit stream pools; abundance of two other prominent grazers, Helicopsyche borealis (Trichoptera) and Centroptilum convexum (Ephemeroptera), however, was unrelated to canopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号