首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pattern of the anatomical distribution of estrogen targetcells in insectivores, rodents and primates is similar. It showsrelationship to the patterns observed in non-mammalian vertebrates.In the forebrain it includes preoptic-septal, central hypothalamic,thalamic and allocortical sites. In neonatal and fetal rodentssimilar target sites can be demonstrated and evolve during embryonicdevelopment; however, the nuclear groups are not as well differentiatedand the appearance of steroid hormone receptors does not occursimultaneously in them. Androgen target cells are accumulatedat sites that overlap in part with those of estradiol, but inaddition are found extensively in areas associated with psychomotorand somatomotor functions, including floor-plate derivativesin the lower brain stem and spinal cord. Glucocorticosteroidsshow extensive localization in neurons of the allocortex. Thisindicates a phylogenetically recent forebrain acquisition, comparedto the sex steroids. Thyroid hormones show nuclear concentrationin many neurons, in addition to selective uptake in tanycyticependyma, choroid plexus and certain neuropil. The close topographicrelationship of hormone target cells to the recess organs ofthe ventricular system led us to propose the concept of interrelatedperiventricular secretory units.  相似文献   

2.
3.
It has been shown that sexual dimorphic morphology of certain hypothalamic and limbic areas underlie gender-specific sexual behavior and neuroendocrine mechanisms. The key role played by locally formed estrogen in these developmental events has been revealed during a critical perinatal period. In this study, we aimed to document the presence of estrogen-synthetase (aromatase)-immunoreactive elements in the involved limbic system and hypothalamus of the developing rat brain. On postnatal day 5, animals of both sexes were perfusion-fixed, and sections from the forebrain and hypothalamus were immunolabelled for aromatase using an antiserum that was generated against a 20 amino acid sequence of placental aromatase. Aromatase-immunoreactivity was present in neuronal perikarya and axonal processes in the following limbic structures: the central and medial nuclei of the amygdala, stria terminalis, bed nucleus of the stria terminalis (BNST), lateral septum, medial septum, diagonal band of Broca, lateral habenula and all areas of the limbic (cingulate) cortex. In the hypothalamus, the most robust labelling was observed in the medial preoptic area, periventricular regions, ventromedial and arcuate nuclei. The most striking feature of the immunostaining with this antiserum was its intracellular distribution. In contrast to the heavy perikaryal labelling that can be observed with most of the currently available aromatase antisera, in the present experiments, immunoperoxidase was predominantly localized to axons and axon terminals. All the regions with fiber staining corresponded to the projection fields of neuron populations that have previously been found to express perikaryal aromatase. Our results confirm the presence of aromatase-immunoreactivity in developing limbic and hypothalamic areas. The massive expression of aromatase in axonal processes raises the possibility that estrogen formed locally by aromatase may not only regulate the growth, pathfinding and target recognition of its host neuronal processes, but may also exert paracrine actions on structures in close proximity, including the target cells.  相似文献   

4.
Results are discussed indicating that neurotransmitters affect steroid hormone activity not only by controlling via neuroendocrine events the hypophysial-gonadal and hypophysial-adrenal axes, but also by modulating cell responsiveness to steroids in target cells. Hyper- or hypoactivity of pineal nerves result in enhancement or impairment of estradiol and testosterone effects on pineal metabolism in vivo and in vitro. Pineal cytoplasmic and nuclear estrogen and androgen receptors are modulated by norepinephrine released from nerve endings at the pinealocyte level. Neural activity affects the cycle of depletion-replenishment of pineal estrogen receptors following estradiol administration. Another site of modulation of steroid effects on the pinealocytes is the intracellular metabolism of testosterone and progesterone; nerve activity has a positive effect on testosterone aromatization and a negative effect on testosterone and progesterone 5α-reduction. NE activity on the pineal cells is mediated via β-adrenoceptors and cAMP. In the central nervous system information on the neurotransmitter modulation of steroid hormone action includes the following observations: (a) hypothalamic deafferentation depresses estrogen receptor levels in rat medial basal hypothalamus; (b) changes in noradrenergic transmission affect, via α-adrenoceptors, the estradiol-induced increase of cytosol progestin receptor concentration in guinea pig hypothalamus; (c) cAMP increases testosterone aromatization in cultured neurons from turtle brain; (d) electrical stimulation of dorsal hippocampus augments, and reserpine or 6-hydroxydopamine treatment decrease, corticoid binding in cat hypothalamus. In the adenohypophysis changes in dopaminergic input after median eminence lesions or bromocriptine treatment of rats result in opposite modifications of pituitary estrogen receptor levels. Therefore all these observations support the view that neurotransmitters can modulate the attachment of steroid hormones to their receptors in target cells.  相似文献   

5.
The distribution of gonadal steroid (estrogen, progesterone) receptors in the brain of the adult female mink was mapped by immunocytochemistry. Using a monoclonal rat antibody raised against human estrogen receptor (ER), the most dense collections of ER-immunoreactive (IR) cells were found in the preoptic/anterior hypothalamic area, the mediobasal hypothalamus (arcuate and ventromedial nuclei), and the limbic nuclei (amygdala, bed nucleus of the stria terminalis, lateral septum). Immunoreactivity was mainly observed in the cell nucleus and a marked heterogeneity of staining appeared from one region to another. A monoclonal mouse antibody raised against rabbit uterine progesterone receptor (PR) was used to identify the PR-IR cells in the preoptic/anterior hypothalamic area and the mediobasal hypothalamus (arcuate and ventromedial nuclei). This study also focused on the relationship between cells containing sex-steroid receptors and gonadotropin-releasing hormone (GnRH) neurons on the same sections of the mink brain using a sequential double-staining immunocytochemistry procedure. Although preoptic and hypothalamic GnRH neurons were frequently in close proximity to perikarya containing ER or PR, they did not themselves possess receptor immunoreactivity. The present study provides neuroanatomical evidence that GnRH cells are not the major direct targets for gonadal steroids and confirms for the first time in mustelids the results previously obtained in other mammalian species.  相似文献   

6.
Goncharuk V  Jhamandas JH 《Peptides》2008,29(9):1544-1553
Human neuropeptide FF2 (hFF2) receptor has been postulated to mediate central autonomic regulation by virtue of its ability to bind with high affinity to many amidated neuropeptides. In the present immunohistochemical study, we identified hFF2 positive neurons in the forebrain and medulla oblongata of individuals, who died suddenly of mechanical trauma or hypothermia. Morphologically, these neurons demonstrated features identified with both projection neurons and interneurons. In the forebrain, the highest density of hFF2 expressing neurons was observed in the anterior amygdaloid area and dorsomedial hypothalamic nucleus, especially in its caudal part. A lesser density of hFF2 neurons was identified in the ventromedial hypothalamic nucleus, lateral and posterior hypothalamic areas whereas few cells were visualized in the paraventricular hypothalamic nucleus, perifornical nucleus, horizontal limb of the diagonal band, ventral division of the bed nucleus of the stria terminalis, nucleus basalis of Meynert and ventral tegmental area. In the medulla, significant numbers of hFF2 neurons were observed in the dorsal motor nucleus of vagus and to a lesser extent in the area of catecholaminergic cell groups, A1/C1. These data provide first immunohistochemical evidence of hFF2 localization in the human brain, which is consistent with that reported for tissue distribution of FF2 mRNA and FF2 binding sites within the brain of a variety of mammalian species. The distribution of hFF2 may help in identifying the role of amidated neuropeptides in the human brain within the context of central autonomic and neuroendocrine regulation.  相似文献   

7.
单配制和多配制动物社会行为有差异,这些差异可能与雌激素受体类型有关(ERs)。虽然多配制大鼠和小鼠中枢神经雌激素受体α(ERα)和β(ERβ)免疫反应在大脑的分布已有报道,单配制雄性草原田鼠中枢神经ERα的分布也有报道,但单配制田鼠ERα和(或)ERβ在雌性和雄性分布差异未见报道。本研究对雄性和雌性棕色田鼠前脑区域ERα和ERβ免疫反应(IR)细胞数量进行比较。研究结果表明:(1)免疫反应主要分布在细胞核中。 (2)ERα-IR和ERβ-IR细胞广泛分布于整个雌性和雄性前脑区域,在许多脑区表达有重叠。然而,不同受体在雌雄不同脑核中的分布数量是不同的。(3)ERα 和ERβ的分布存在性别差异。例如,雌性ERα在视前核中部(MPN),终纹床和(BNST)和杏仁内侧核(MeA)比雄性多,相反雄性ERβ在MPN和BNST比雌性多。这些研究结果可能为我们理解如何通过ERα和ERβ调节动物的社会行为,及雌性和雄性社会行为的差异提供一个重要的神经解剖学基础。  相似文献   

8.
Recent work has shown that estrogen receptor mRNA and protein co-localize with neurotrophin receptor systems in the developing basal forebrain. In the present study we examined the potential for reciprocal regulation of estrogen and neurotrophin receptor systems by their ligands in a prototypical neurotrophin target, the PC12 cell. using in situ hybridization histochemistry, RT-PCR and a modified nuclear exchange assay, we found both estrogen receptor mRNA and estrogen binding in PC12 cells. Moreover, while estrogen binding was relatively low in naive PC12 cells, long-term exposure to NGF enhanced estrogen binding in these cells by sixfold. Furthermore, concurrent exposure to estrogen and NGF receptor mRNAs deifferentially regulated the expression of the two NGF receptor mRNAs. The expression of trkA mRNA was up-regulated, while p75NGFR mRNA was down-regulated transiently. The present data indicate that NGF may increase neuronal sensitivity to estrogen, and that estrogen, by differentially regulating p75NGFR and trkA mRNA, may alter the ratio fo the two NGF receptors, and, conseuqnetly, neurotrophin responsivity. In view of the widespread co-localization of estrogen and neurotrophin receptor systems in the developing CNS, the reciprocal regulation of these receptor systems by NGF and estrogen may have important implications for processes governing neural maturation and the maintenance of neural funciton. 1994 John Wiley & Sons, Inc.  相似文献   

9.
10.
Mu-opioid receptor (MOR) and opioid receptor-like receptor (ORL-1) circuits in the limbic hypothalamic system are important for the regulation of sexual receptivity in the female rat. Sexual receptivity is tightly regulated by the sequential release of estrogen and progesterone from the ovary suggesting ovarian steroids regulate the activity of these neuropeptide systems. Both MOR and ORL-1 distributions overlap with the distribution of estrogen and progesterone receptors in the hypothalamus and limbic system providing a morphological substrate for interaction between steroids and the opioid circuits in the brain. Both MOR and ORL-1 are receptors that respond to activation by endogenous ligands with internalization into early endosomes. This internalization is part of the mechanism of receptor desensitization or down regulation. Although receptor activation and internalization are separate events, internalization can be used as a temporal measure of circuit activation by endogenous ligands. This review focuses on the estrogen and progesterone regulation of MOR and ORL-1 circuits in the medial preoptic nucleus and ventromedial nucleus of the hypothalamus that are central to modulating sexual receptivity.  相似文献   

11.
The rapid activation of stress-responsive neuroendocrine systems is a basic reaction of animals to perturbations in their environment. One well-established response is that of the hypothalamo-pituitary-adrenal (HPA) axis. In rats, corticosterone is the major adrenal steroid secreted and is released in direct response to adrenocorticotropin (ACTH) secreted from the anterior pituitary gland. ACTH in turn is regulated by the hypothalamic factor, corticotropin-releasing hormone. A sex difference exists in the response of the HPA axis to stress, with females reacting more robustly than males. It has been demonstrated that in both sexes, products of the HPA axis inhibit reproductive function. Conversely, the sex differences in HPA function are in part due to differences in the circulating gonadal steroid hormone milieu. It appears that testosterone can act to inhibit HPA function, whereas estrogen can enhance HPA function. One mechanism by which androgens and estrogens modulate stress responses is through the binding to their cognate receptors in the central nervous system. The distribution and regulation of androgen and estrogen receptors within the CNS suggest possible sites and mechanisms by which gonadal steroid hormones can influence stress responses. In the case of androgens, data suggest that the control of the hypothalamic paraventricular nucleus is mediated trans-synaptically. For estrogen, modulation of the HPA axis may be due to changes in glucocorticoid receptor-mediated negative feedback mechanisms. The results of a variety of studies suggest that gonadal steroid hormones, particularly testosterone, modulate HPA activity in an attempt to prevent the deleterious effects of HPA activation on reproductive function.  相似文献   

12.
Zhang Y  Scarpace PJ 《Peptides》2006,27(2):350-364
We identified that leptin resistance in aged-obese rats has both peripheral and central components. The central resistance is characterized by diminished hypothalamic leptin receptors and impaired leptin signal transduction. We developed a new model of leptin-induced leptin resistance in which application of the central leptin gene delivery produces unabated hypothalamic leptin over-expression. The chronic central elevation of leptin precipitates leptin resistance in young animals devoid of obesity and exacerbates it in mature or aged animals with obesity. Despite leptin resistance, our aged obese, DIO, and leptin-induced leptin resistant rats were fully responsive to central pharmacological melanocortin activation. We propose that the central leptin resistance resides between leptin receptor and melanocortin receptor activation. Our central POMC gene therapy overcame leptin resistance, producing weight and fat loss and improved insulin sensitivity in obese Zucker and aged rats. This success highlights the central melanocortin system as a useful drug target for combating obesity.  相似文献   

13.
Estrogen receptors (ERs) play an important role in estrogen function. However, it is well known that there are species differences in amino acid sequences of the ligand binding domains. Here, we report on the analysis of species differences in ER-dependent transactivation with some chemicals using reporter gene assays. Full-length ER cDNAs from human, rat, chicken, alligator (Caiman), whiptail lizard, African clawed frog and rainbow trout were prepared from hepatic mRNA by the RT-PCR method and inserted into expression plasmids. Both expression and reporter plasmids were transiently transfected into HeLa cells, and then the estrogenic effects of chemicals were analyzed in terms of induction of luciferase activity. No species differences in transactivation were found among human, rat, chicken, alligator, whiptail lizard and African clawed frog ERs. However, thermo-dependent alteration in susceptibility to 17-beta-estradiol was observed with the rainbow trout ER because of thermo-dependence of estrogen binding.  相似文献   

14.
The anatomical localization of brain cells which concentrate steroid hormones or their metabolites was carried out by radioautographic procedures. Ovariectomized or adrenalectomized animals were injected with the appropriate tritiated hormones, and brain tissue was processed through procedures which minimize the removal or displacement of steroids. Target cells were characterized by the concentration and retention of radioactive hormone in their nuclei. For each mammalian steroid hormone, nuclear binding sites exist in populations of cells with a specific regional localization in the brain and in the pituitary. The distribution of estrogen target cells was remarkably similar in the brains of rodents and primates although some minor species differences existed. Heavily labeled cells were present in the preoptic region, the septum, the amygdala and the mediobasal hypothalamus. The localization of progestagen-concentrating cells in the rodent and galago brain was limited to two hypothalamic areas: the preoptic region and the mediobasal hypothalamus. Corticosterone target cells were situated in extrahypothalamic regions of the rat central nervous system such as the hippocampus, the septum, the amygdala and certain regions of the brain cortex. However, the synthetic glucocorticosteroid, dexamethasone, was mainly found in the pituitary cells and in some neurons and glial cells of the mediobasal hypothalamus. The distribution pattern of steroid-sensitive cells within the brain and the pituitary gland corresponds to sites which are involved in the neuroendocrine processes regulating reproduction, including gonadotropin secretion and sexual behavior.  相似文献   

15.
We have suggested that in the nonhuman primate endometrium, stromal cells might play a role in mediating the effects of estrogen on the epithelium, especially during the luteal-follicular transition (LFT) when target cells normally escape from the inhibitory influence of progesterone (P). We now report that like estrogen receptors (ER), endometrial progestin receptors (PR) are detectable only in stromal cells until the fifth day of the LFT. With a technique that combined immunocytochemistry and autoradiography on the same sections, we characterized the cellular distribution of ER or PR coincidentally with the localization of [3H]thymidine taken up in vitro by endometria from monkeys undergoing an LFT. DNA synthesis in the glands of the upper endometrium was E2-dependent, but the distribution of [3H]thymidine was not positively correlated with the presence of ER or PR. Readministration of P to animals on days 3 or 4 of the LFT significantly reduced the [3H]thymidine labeling index of the glandular epithelium and caused stromal ER to decline, but P did not block the eventual appearance of ER in epithelial cells on day 5 of the LFT. Thus, E2 stimulated DNA synthesis in epithelial cells that lacked ER, and P suppressed DNA synthesis in these cells even though PR was only detected in the stroma when P treatment began. These data are consistent with a role for endometrial stromal cells in mediating the effects of E2 and P on the epithelium during the LFT.  相似文献   

16.
Specific progesterone receptor of 7S which can be isolated from rat female hypothalamic and hypophysial cytosols was further investigated in terms of its induction effects by estrogen-priming, intracerebral localization, 5α-dihydroprogesterone (DHP) binding, and nuclear receptors. Estrogen-priming was necessary for the appearance of the cytosol receptors. The 7S hypothalamic and hypophysial receptors were increased in a dose dependent fashion by estradiol injections. The maximal effective doses of estradiol benzoate for both tissues were 1 and 10 μg, respectively.The receptors were mostly localized in the median eminence, preoptic-anterior hypothalamus and anterior hypophysis of estrogen-primed immature and mature rats, but little or no 7S binding was detected in the cerebral cortex, reticular formation, amygdaloid complex and posterior hypophysis. This differential localization of progesterone receptors resembles that of estrogen receptors, suggesting possible induction of progesterone receptors in these specific brain regions by estrogen.Progesterone receptor complexes of 5S were isolated from “purified” nuclei of anterior pituitaries from estrogen-primed adult female rats. These results on the cytosol and nuclear receptors suggest that progesterone can directly act on the brain through its interaction with specific progesterone receptors in the hypothalamus and hypophysis. It is noteworthy that 5α-DHP can bind the progesterone receptors in both tissues, suggesting its direct feedback action on the brain through the receptors.  相似文献   

17.
These experiments utilized the estrogen antagonists CI-628, nafoxidine, and tamoxifen as tools to investigate potential molecular mechanisms of estrogen activation of female rat sexual behavior. Adult female rats, ovariectomized 4–7 days previously and matched for body weight, were administered single sc injections of one of the three antiestrogens, and the ability of the antagonists to block estrogen-induced sexual behavior, to deplete and replenish hypothalamic estrogen receptors, and to inhibit the binding of estradiol by hypothalamic nuclei 2 hr, or 1, 2, 4, or 7 days later was assessed. All three compounds produced a dose- and time-dependent inhibition of estrogen-activated lordosis, with tamoxifen being the most potent inhibitor. The three antiestrogens also caused prolonged depletion of hypothalamic estrogen receptors, but there was no correlation between receptor levels and the degree of inhibition of lordosis behavior at any time point following antiestrogen treatment. Rats showed high levels of sexual receptivity when antiestrogens were injected 2, 4, or 7 days before estrogen; however, hypothalamic estrogen receptors were still markedly (up to 70%) reduced at some of these time points. In contrast, there was a large (r = 0.67), significant correlation between the ability of all three agents to reduce [3H]estradiol binding by brain cell nuclei and their ability to reduce the display of estrogen-induced female sexual behavior. Antiestrogen injections which inhibited lordosis always decreased the level of specific estradiol binding by hypothalamic nuclei. These data indicate that delayed receptor replenishment does not adequately explain the antagonism of lordosis behavior by antiestrogens. The results presented here strongly point to the cell nucleus as the critical locus of receptor-mediated interactions which underlie estrogen and antiestrogen regulation of female sexual behavior.  相似文献   

18.
Ovarian steroid hormones exert a broad range of effects on the body and brain. In the nervous system, estrogen and progesterone have crucial feedback actions on the hypothalamic neurons that drive the reproductive axis. In addition, hormones exert a variety of actions on other traditionally nonreproductive functions such as cognition, learning and memory, neuroprotection, mood and affective behavior, and locomotor activity. The actions of hormones on the hypothalamus are largely mediated by their nuclear hormone receptors, the two estrogen receptors, ERalpha and ERbeta, and the two progesterone receptor isoforms, PR-A and PR-B. Thus, changes in the circulating concentrations of estrogens and progestins during the life cycle can result in differential activation of their receptors. Furthermore, changes in the numbers, activity, and distribution of hypothalamic ERs and PRs can occur as a function of developmental age. The purpose of this article is to review the literature on the causes and consequences of alterations in steroid hormones, their neural receptors, and their interactions on reproductive senescence. We have also discussed several important experimental design considerations, focusing on rodent models in current use for understanding the mechanisms of menopause in women.  相似文献   

19.
The cyclic rise in expression of anterior pituitary gonadotropins coincides with the appearance of cells sharing gonadotropic and somatotropic phenotypes. To learn more about possible factors that regulate the origin of this cell type, we studied the time of appearance of cells that co-expressed growth hormone (GH) and gonadotropins and estrogen receptors during the estrous cycle and compared this timing with known changes in regulatory hormones or their receptors. The first event in this cell population is an increase in expression of estrogen receptor (ER)beta by GH cells from estrus to metestrus suggesting that estrogen may mediate this early change. Expression of GH mRNA rises rapidly from metestrus to mid-cycle. The rise is seen first in GH cells and then in cells with luteinizing hormone (LH) antigens. These data suggest that, early in the cycle, cells bearing GH and growth hormone releasing hormone (GHRH) receptors begin to produce LH and gonadotropin releasing hormone (GnRH) receptors. Early in proestrus, there is an increase in cells with GH and follicle-stimulating hormone (FSH) suggesting that this set of multipotential cells develops later than GH-LH cells. This fits with earlier studies showing the later rise in expression of FSH mRNA. Collectively these data suggest that the anterior pituitary contains a subset of GH cells that have the capacity to respond to multiple releasing hormones and support more than one system.  相似文献   

20.
The hypothalamic neuropeptide oxytocin (OT), which controls childbirth and lactation, receives increasing attention for its effects on social behaviors, but how it reaches central brain regions is still unclear. Here we gained by recombinant viruses selective genetic access to hypothalamic OT neurons to study their connectivity and control their activity by optogenetic means. We found axons of hypothalamic OT neurons in the majority of forebrain regions, including the central amygdala (CeA), a structure critically involved in OT-mediated fear suppression. In vitro, exposure to blue light of channelrhodopsin-2-expressing OT axons activated a local GABAergic circuit that inhibited neurons in the output region of the CeA. Remarkably, in vivo, local blue-light-induced endogenous OT release robustly decreased freezing responses in fear-conditioned rats. Our results thus show widespread central projections of hypothalamic OT neurons and demonstrate that OT release from local axonal endings can specifically control region-associated behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号