首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycerol Phosphate Dehydrogenase in Developing Chick Retina and Brain   总被引:1,自引:1,他引:0  
Abstract: The development of cytoplasmic glycerol phosphate dehydrogenase (GPDH) activity in chick neural retina is compared with that in brain. GPDH converts dihydroxyacetone phosphate to glycerol 3-phosphate, an intermediate in phospholipid synthesis. The enzyme is known to be under corticosteroid control in rat brain and spinal cord (but not muscle or liver) and in primary oligodendrocyte cultures. It has not been previously studied in the eye. In chick brain the GDPH specific activity rises fivefold from the early embryo to the adult, with nearly all the increase occurring between embryonic day 14 and hatching. This time course correlates well with the known maturation of chick adrenal cortex (which produces corticosteroids). On the other hand, in chick retina the GPDH specific activity remains at a low basal level throughout development. Furthermore, adult rat and beef retinas show much lower enzyme activity than do the corresponding brain tissues. GPDH can be induced precociously by hydrocortisone in embryonic chick brain from days 12 through 16, both in the intact embryo and in tissue culture; however, GPDH is not at all inducible in chick retina. The developmental increase in chick brain GPDH can be correlated qualitatively with myelin formation, as shown by luxol fast blue staining, whereas no myelin is seen in retina at any age. Our results are consistent with recent immunocytochemical studies demonstrating that GPDH in rat brain is associated with myelin-producing oligodendroglial cells, absent in retina. In comparison, another glial enzyme, glutamine synthetase (GS), known to be inducible in both chick brain and retina, is localized in brain astrocytes and retinal Müller cells.  相似文献   

2.
Developmental changes in lactate dehydrogenase (LDH), enolase, hexokinase (HK), malate dehydrogenase (MDH), and glutamate dehydrogenase (GDH) activities were measured in cultures of pure neurons and glial cells prepared from brains of chick embryos (8 day-old for neurons, 14 day-old for glial cells) as a function of cellular development with time in culture. The modifications observed in culture were compared to those measured in brain extracts during the development of the nervous tissue in the chick embryo and during the post-hatching period. A significant increase of MDH, GDH, LDH, and enolase activities are observed in neurons between 3 and 6 days of culture, whereas simultaneously a decrease of HK values occurs. In the embryonic brain between 11 and 14 days of incubation, which would correspond for the neuronal cultures to day 3 through 6, modifications of MDH, GDH, HK, and enolase levels are similar to those observed in neurons in culture. Only the increase of LDH activity is less pronounced in vivo than in cultivated cells. The evolution of the tested enzymatic activities in the brain of the chick during the period between 7 days before and 10 days after hatching is quite similar to that observed in cultivated glial cells (prepared from 14 day-old embryos) between 6 and 18 days of culture. All tested activities increased in comparable proportions. The modifications of the enzymatic profile indicate that some maturation phenomena affecting energy metabolism of neuronal and glial elements in culture, are quite similar to those occuring in the total nervous tissue. A relationship between the development of the energy metabolism of the brain and differentiation processes affecting neuroblasts and the glial-forming cells is discussed.  相似文献   

3.
In applying recently developed methods for measuring adenyl and guanyl cyclase activities, we found that some modifications produced much better cyclic nucleotide recovery, lower assay backgrounds, and greater reliability than previously reported. The reliability and specificity of the assay methods were confirmed by substrate and product analysis. Kinetic analysis of rat liver guanyl and adenyl cyclase was subsequently performed to investigate regulatory properties of both enzymes. The Michaelis-Menton constant of guanyl cyclase activity of a 30,000g supernatant fraction of rat liver for guanosine 5′-triphosphate (GTP) was 0.04 mm. This enzyme was competitively inhibited by adenosine 5′-triphosphate (ATP) (Ki = 0.011 mM). Guanyl cyclase was activated in vitro by secretin but unaffected by carbamylcholine, hist-amine, methoxamirie, serotonin, glucagon, and pancreozymin. Liver homogenate adenyl cyclase had a Michaelis-Menten constant for ATP of 0.2 mm. This enzyme was activated by secretin, pancreozymin, glucagon, sodium fluoride, and isoproterenol. GTP (0.005 mm) enhanced the activation by both isoproterenol and glucagon. Methoxamine had no effect on adenyl cyclase activity in the presence or absence of GTP. These results suggest that both guanyl cyclase and adenyl cyclase may be mediators of hormone action in the liver.  相似文献   

4.
Francescangeli  E.  Lang  D.  Dreyfus  H.  Boila  A.  Freysz  L.  Goracci  G. 《Neurochemical research》1997,22(10):1299-1307
Platelet-Activating Factor (PAF) is a potent lipid mediator involved in physiological and pathological events in the nervous tissue where it can be synthesized by two distinct pathways. The last reaction of the de novo pathway utilizes CDPcholine and alkylacetylglycerol and is catalyzed by a specific phosphocholinetransferase (PAF-PCT) whereas the remodelling pathway ends with the reaction catalyzed by lyso-PAF acetyltransferase (lyso-PAF AcT) utilizing lyso-PAF, a product of phospholipase A2 activity, and acetyl-CoA. The levels of PAF in the nervous tissue are also regulated by PAF acetylhydrolase that inactivates this mediator. We have studied the activities of these enzymes during cell proliferation and differentiation in two experimental models: 1) neuronal and glial primary cell cultures from chick embryo and 2) LA-N-1 neuroblastoma cells induced to differentiate by retinoic acid (RA). In undifferentiated neuronal cells from 8-days chick embryos the activity of PAF-PCT was much higher than that of lyso-PAF AcT but it decreased during the period of cellular proliferation up to the arrest of mitosis (day 1–3). During this period no significant changes of lyso-PAF AcT activity was observed. Both enzyme activities increased during the period of neuronal maturation and the formation of cellular contacts and synaptic-like junctions. The activity of PAF acetylhydrolase was unchanged during the development of the neuronal cultures. PAF-PCT activity did not change during the development of chick embryo glial cultures but lyso-PAF AcT activity increased up to the 12th day. RA treatment of LA-N-1 cell culture in proliferation decreased PAF-PCT activity and had no significant effect on lyso-PAF AcT and PAF acetylhydrolase indicating that the synthesis of PAF by the enzyme catalyzing the last step of the de novo pathway is inhibited when the LA-N-1 cells are induced to differentiate. These data suggest that: 1) in chick embryo primary cultures, both pathways are potentially able to contribute to PAF synthesis during development of neuronal cells particularly when they form synaptic-like junctions whereas, during development of glial cells, only the remodelling pathway might be particularly active on synthesizing PAF; 2) in LA-N-1 neuroblastoma cells PAF-synthesizing enzymes coexist and, when cells start to differentiate the contribution of the de novo pathway to PAF biosynthesis might be reduced.  相似文献   

5.
The uptake of calcium was examined in primary cultures of pure neurons and of glial cells from dissociated hemispheres of chick embryo brain. Neuronal cultures took up calcium at a rate of 2.0 nmol per min per mg cell protein at medium concentrations of 1.2 mM-Ca2+ and 5.4 mM-K+. The rate of calcium entry into neurons was increased 2.7-fold by elevating medium potassium to 60 MM. The effect of high external potassium was to increase the Vmax value for calcium transport from 5.5 to 13 nmol per min per mg; the Michaelis constant for calcium, 1.2 mM, was unchanged. The potassium-dependent component of calcium entry into the neuronal cultures was eliminated by addition of 0.1 mM-D-600 (a verapamil derivative) or by 1 mM-CoCl2, but 0.5 μM-tet-rodotoxin had no significant effect. When choline replaced potassium in uptake medium no change in calcium transport was detected in neurons, nor was the entry of calcium increased when choline replaced sodium. Glial cultures took up calcium at 20% of the basal rate for neuronal cultures on a weight-of-protein basis. Uptake was not increased by potassium; during depolarization by potassium the calcium transport activity of glia was less than 10% that of neurons. It was concluded that cultured neurons contain a depolarization-sensitive, calcium-specific channel. A similar calcium transport activity was not detected in cultured glial cells.  相似文献   

6.
Antisera raised against neurofilament (NF) peptides and glial fibrillary acidic protein (GFA) (subunit of glial filaments) have been used to identify neurons and astrocytes in order to study their development and differentiation in rat embryo. In vivo observations showed that NF-positive cells first appeared in 12-day-old embryos, whereas GFA-positive cells appeared in brain and spinal cord on the 18th day. In vitro observations showed that NF-positive cells could be obtained only in cultures from 12-day embryos onwards. The further differentiation of neurons involved neurite elongation, aggregation of cell bodies to form islets, and emergence of very brightly staining prominent neurons with large cell bodies and long neurites which took part in complicate pattern formation. GFA-positive cells appeared in vitro on the 16th day and they could be observed even in cultures obtained from 10-day-old embryos. As the culture aged, the GFA staining became highly fibrillary. There was no physical interaction between neuronal and glial processes.  相似文献   

7.
Abstract: Previous studies showed that in cultured chick ciliary ganglion neurons and CNS glia, adenosine can be synthesized by hydrolysis of 5'-AMP and that the accumulation of the adenosine degradative products inosine and hypoxanthine was significantly greater in glial than in neuronal cultures. Furthermore, previous immunochemical and histochemical studies in brain showed that adenosine deaminase and nucleoside phosphorylase are localized in endothelial and glial cells but are absent in neurons; however, adenosine deaminase may be found in a few neurons in discrete brain regions. These results suggested that adenosine degradative pathways may be more active in glia. Thus, we have determined if there is a differential distribution of adenosine deaminase, nucleoside phosphorylase, and xanthlne oxidase enzyme fluxes in glia, comparing primary cultures of central and ciliary ganglion neurons and glial cells from chick embryos. Hypoxanthine-guanine phosphoribosyltransferase and production of adenosine by S-adenosylhomocysteine hydrolase activity were also examined. Our results show that there is a distinct profile of purine metabolizing enzymes for glia and neurons in culture. Both cell types have an S-adenosylhomocysteine hydrolase, but it was more active in neurons than in glia. In contrast, in glia the enzymatic activities of xanthine oxidase (443 ± 61 pmol/min/107 cells), nucleoside phosphorylase (187 ± B pmol/min/107 cells), and adenosine deaminase (233 ± 32 pmol/min/107 cells) were more active at least 100, 20, and five times, respectively, than in ciliary ganglion neurons and 100, 100, and nine times, respectively, than in central neurons.  相似文献   

8.
Previous data suggest that nucleotides are important mitogens in the developing retina. Here, the effect of ATP on the death of cultured chick embryo retina cells was investigated. In cultures obtained from retinas of 7-day-old chick embryos (E7) that were cultivated for 2 days (E7C2), both ATP and BzATP induced a ~30 % decrease in cell viability that was time- and dose-dependent and that could be blocked by 0.2 mM oxidized ATP or 0.3 μM KN-62. An increase in cleaved caspase-3 levels and in the number of TUNEL-positive cells was observed when cultures were incubated with 3 mM ATP and immunolabeling for cleaved-caspase 3 was observed over neurons but not over glial cells. ATP-dependent cell death was developmentally regulated, the maximal levels being detected by E7C2-3. Nucleotides were able to increase neuronal ethidium bromide and sulforhodamine B uptake in mixed and purified neuronal cultures, an effect that was blocked by the antagonists Brilliant Blue G and oxidized ATP. In contrast, nucleotide-induced cell death was observed only in mixed cultures, but not in purified cultures of neurons or glia. ATP-induced neuronal death was blocked by the glutamatergic antagonists MK801 and DNQX and activation of P2X7 receptors by ATP decreased the uptake of [3H]-d-aspartate by cultured glial cells with a concomitant accumulation of it in the extracellular medium. These results suggest that ATP induces apoptosis of chick embryo retinal neurons in culture through activation of P2X7 and glutamate ionotropic receptors. Involvement of a P2X7 receptor-mediated inhibition of the glial uptake of glutamate is suggested.  相似文献   

9.
Abstract: Glutamine transaminase K and ω-amidase activities are present in the chick brain and in the brains of adult mice, rats, and humans. However, the activity of gluta-mine transaminase K in adult mouse brain is relatively low. In the chick embryo, cerebral glutamine transaminase K activity is low between embryonic days 5 and 17, but by day 23 (day of hatching) activity rises dramatically (< 15-fold). Cerebral ω-amidase activity is relatively high at embryonic day 5 but lower between days 5 and 17; at embryonic day 23 the activity rises to a maximum. Both glutamine transaminase K and ω-amidase are present in cultured chick, rat, and mouse astrocytes and neurons. For each species, the activity of glutamine transaminase K is higher in the astrocytes than in the neurons. The activity of ω-amidase is about the same in the cultured chick astrocytes and neurons but significantly higher in rat astrocytes than in rat neurons. The data suggest that the rise in brain glutamine transaminase K activity in the chick embryo at hatching correlates with maturation of astrocytes. Glutamine transaminase K may be involved in glutamine cycling in astrocytes. Glutamine transaminase K appears to be a major cysteine S-conjugate β-lyase of the brain and may play a role in the neurotoxicity associated with exposure to dichloroacetylene and perhaps to other toxins.  相似文献   

10.
Developmental changes in the concentration of beta-citryl-L-glutamate(beta-CG) have been examined in the cerebrum and optic lobe of the developing chick brain and in primary cultured neuronal cells from the chick embryo optic lobes with gas chromatographic and HPLC methods originated in our studies. A sharp peak was shown by beta-CG, with a maximal concentration at 13 days of incubation in the optic lobe of the developing chick brain but decreasing markedly to adult levels. The developmental change in primary cultured neurons was similar to that in the optic lobe of the developing chick brain. Changes in synthetic and hydrolytic activities of beta-CG were studied during growth of primary cultured neurons. Incorporation of radioactivities from radiolabeled pyruvate and alanine into beta-CG increased significantly on day 3 of culture, reaching a plateau on day 6, whereas that from radioactive glutamine and glutamate increased gradually from day 3 to day 12 of culture. The hydrolyzing enzyme activity of beta-CG during neuron growth was low until day 3 of culture, when it increased significantly until day 12. Similar developmental changes were observed in the developing chick embryo optic lobes.  相似文献   

11.
The proliferative activity of undifferentiated brain cells from either 5- or 7-day-old chick embryos has been investigated by labeling the cells with a 24-hr pulse label of [14C]- or [3H]-thymidine during the early stages (0 to 8 days) of culture. As soon as the neurons and the glial cells could be distinguished (after 4, 7, or 14 days of culture), the cultures were prepared and submitted to the activated autoradiographic method. In some experiments a continuous labeling was applied up to 2 weeks. During the first 48 hr of culture, and for both embryonic ages studied, nearly all neuronal precursors were able to proliferate. After 4 days in culture for the 7-day-old embryo and 7 days in culture for the 5-day-old embryo most of the neuronal cells stopped dividing. These two culture periods correspond to the stage of the embryonic life when the end of the mitotic activity of neuroblasts occurs in vivo. Thus, the proliferation and development in culture of most neuroblasts was found to parallel the in vivo evolution of these cells. Some neuroblasts, however, continued to multiply in vitro for a longer period of time. The astroblasts precursors were found to multiply actively from the 3rd day on, or immediately from time zero, for the 5- and 7-day-old chick embryos, respectively. These observations seem to indicate that the astroblast precursors are in a latent stage until they have reached Day 7. Thereafter, they proliferate actively during the first week of culture and therefore remain in an embryonic stage during this culture period. This fact corresponds also to the in vivo situation, where the glial cell precursors multiply actively around the same time period.  相似文献   

12.
The development of gamma-glutamyl transpeptidase (GGT) activity in neurones and glial cells was studied in primary cell cultures derived from the cerebral hemispheres of chick embryos. GGT activity was found in both basic types of nervous tissue cells. It was always higher in glial cell cultures, where it was up to 2.3-fold the values in neurone-enriched cultures. If the culture medium contained foetal calf serum, the GGT activity of both types of nerve cells was higher than in the presence of inactivated calf serum. Comparison with the in vivo situation showed that the level of GGT activity in nerve cell cultures was significantly lower. Between the seventh day of embryogenesis and the third day of postnatal development of the nerve cells, there were marked differences between the GGT activity of cells maintained under in vitro conditions and cells of the same age in brain tissue homogenate. GGT activity in cerebral hemisphere homogenates from a 17-day-old embryos amounted to 4-fold the activity in a primary glial cell culture and to 16-fold the value in a neurone-enriched culture from hemispheres at the same stage of development.  相似文献   

13.
Brain extracts from 8-day-old chick embryos have been shown to influence morphological development of dissociated brain cells from 7-day-old chick embryos in culture. Stimulatory, effects on size of the neuronal somas and on growth of long processes were observed by adding the cytosol of the brain extract or the dialysate of the cytosol. These morphological changes parallel modifications of various enzyme activities according to the age of the cultures. Adenyl cyclase, (Na+, K+)- and Mg2+-ATPase, 5-nucleotidase, choline acetyltransferase, and acetylcholinesterase activities were studied between 5 and 14 days of culture. Adenyl cyclase activity was strongly stimulated at 8 days by both extracts. (Na+, K+)-and Mg2+-ATPase activities were stimulated in 8-day-old cultures only by the dialysate. 5-Nucleotidase activity was stimulated in 8-day-old cultures by the dialysate and in 11-day-old cultures by both extracts. Choline acetyltransferase activity was stimulated by the cytosol in 8-day-old cultures and by the dialysate in 11-day-old cultures. The total acetylcholinesterase activity was higher in 8-, 11-, and 14-day-old cultures treated with the cytosol. When the cells were treated with the dialysate, the activity was only higher in 14-day-old cultures. We also found that following the addition of brain extracts, the specific activity of the enzymes we studied was enhanced and became close to the values found in vivo during embryogenesis. Thus in parallel to the morphological modifications observed in nerve cell cultures treated by embryo brain extracts, biochemical variations especially involved in synaptogenesis and membrane development could be measured.  相似文献   

14.
D Dvorak  E Gipps  J Leah  C Kidson 《Life sciences》1978,22(5):407-414
The development of receptors for α-bungarotoxin was examined in neurons in dissociated cultures of cells derived from chick embryo sympathetic ganglia. Neurons from 12 day embryos showed a marked increase in receptor numbers per cell over 3–4 days in culture. The increase was less marked in neurons from 14 day embryos and absent in 19 day embryos. The incidence of cholinergic synapses in cultures from 12 day and 19 day embryos was also examined. Evidence for synapse formation was found only in cultures from older embryos.  相似文献   

15.
Summary Explants of 10–12 day chick embryo spinal cord were cultured by coverslip-roller tube method for 3–80 days. The cellular and subcellular localization of acetylcholinesterase activity in cultured neurons was studied by the thiocholine techniques of Karnovsky and Roots and Lewis and Shute.At the light microscopic level, acetylcholinesterase was demonstrated in the neurons of both ventral and dorsal horn regions. Occasionally neurons migrated in the outgrowth zone exhibited strong intracellular activity.At the electron microscopic level, acetylcholinesterase activity was found in the nuclear envelope, granular endoplasmic reticulum and the Golgi apparatus of the neurons. No enzyme reaction was detected in the glial cell cytoplasm.  相似文献   

16.
By means of a multistage quantitative assay, we have identified a new kind of cell adhesion molecule (CAM) on neuronal cells of the chick embryo that is involved in their adhesion to glial cells. The assay used to identify the binding component (which we name neuron-glia CAM or Ng-CAM) was designed to distinguish between homotypic binding (e.g., neuron to neuron) and heterotypic binding (e.g., neuron to glia). This distinction was essential because a single neuron might simultaneously carry different CAMs separately mediating each of these interactions. The adhesion of neuronal cells to glial cells in vitro was previously found to be inhibited by Fab' fragments prepared from antisera against neuronal membranes but not by Fab' fragments against N-CAM, the neural cell adhesion molecule. This suggested that neuron-glia adhesion is mediated by specific cell surface molecules different from previously isolated CAMs . To verify that this was the case, neuronal membrane vesicles were labeled internally with 6-carboxyfluorescein and externally with 125I-labeled antibodies to N-CAM to block their homotypic binding. Labeled vesicles bound to glial cells but not to fibroblasts during a 30-min incubation period. The specific binding of the neuronal vesicles to glial cells was measured by fluorescence microscopy and gamma spectroscopy of the 125I label. Binding increased with increasing concentrations of both glial cells and neuronal vesicles. Fab' fragments prepared from anti-neuronal membrane sera that inhibited binding between neurons and glial cells were also found to inhibit neuronal vesicle binding to glial cells. The inhibitory activity of the Fab' fragments was depleted by preincubation with neuronal cells but not with glial cells. Trypsin treatment of neuronal membrane vesicles released material that neutralized Fab' fragment inhibition; after chromatography, neutralizing activity was enriched 50- fold. This fraction was injected into mice to produce monoclonal antibodies; an antibody was obtained that interacted with neurons, inhibited binding of neuronal membrane vesicles to glial cells, and recognized an Mr = 135,000 band in immunoblots of embryonic chick brain membranes. These results suggest that this molecule is present on the surfaces of neurons and that it directly or indirectly mediates adhesion between neurons and glial cells. Because the monoclonal antibody as well as the original polyspecific antibodies that were active in the assay did not bind to glial cells, we infer that neuron- glial interaction is heterophilic, i.e., it occurs between Ng-CAM on neurons and an as yet unidentified CAM present on glial cells.  相似文献   

17.
The immunological analysis of cell surface constituents which may characterize neuronal and glial populations, though still in its infancy, will greatly facilitate the investigation of several important problems in neurobiology. One critical component of such analyses is the way by which a given antiserum can be shown to be active on, and possibly selective for neurons and glial cells from normal neural tissues. This report describes the use of monolayer cultures of normal neural cells for recognition and quantitative titration of antisera directed against them. Sera were collected from rabbits immunized with chick embryo spinal cord cell susptnsions, and found to be reactive to the same cells in the initial cell dissociate as well as in subsequent monolayer cultures of different in vitro ages. A monolayer assay procedure was developed, which (i) uses small numbers of cells and small volumes of immune reagents, with the possibility of further scaling down; (ii) applies equally to cultures using different substrata; (iii) permits differential counts of morphologically different cultured cells; (iv) allows to recognize cytological damage imposed by the immune serum in the presence, though not in the absence, of complement; and (v) quantitatively titrates the immune activity with 10- to 20-fold higher sensitivity than other titration procedures. While the study was not intended to investigate the possible specificities of the new antisera, it provided the unexpected observation that non-neuronal cells in these spinal cell cultures were considerably less sensitive than neurons to the complement-dependent action of the antisera.  相似文献   

18.
Markers of neuronal cell differentiation (GABA accumulation, choline acetyltransferase activity) are shown to increase initially and then decline sharply in monolayer cultures of 9 day embryo neuroretinal (NR) cells. A glial marker (glutamine synthetase, GSase) is precociously inducible by hydrocortisone (HC) in dense'monolayer' NR cultures (containing aggregates of neuronal cells overlying the glial sheet) as well as in chick embryo retinal explants. The induced level of GSase activity is not maintained in the continued presence of HC, but rather declines by 20 days in vitro. Choline acetyltransferase (CAT) activity is higher in HC-treated cultures than in controls only during the period when induced GSase activity is detectable. Furthermore, the subsequent transdifferentiation of lens cells (monitored as δ crystallin content) in these cultures is delayed by 10 days and much reduced in extent when HC is present throughout the culture period.
We suggest a simple model to account for these results, on the basis of recent evidence that lens cells are derived mainly from the retinal epithelial cells (immature Müller glia) of 9-day embryonic NR, and that transdifferentiation results from a change in cell determination during the early stages of'monolayer' culture. In outline, our model proposes that early dedetermination of the retinal glia is associated with a decline of neuronal cell markers (dedifferentiation) followed eventually by loss of the neuronal cells. Hydrocortisone, by inducing transient glial cell differentiation (GSase activity), both prolongs the expression of a neuronal marker (CAT) and also reduces later transdifferentiation into lens.  相似文献   

19.
The specific activity of the enzyme choline acetyl transferase (CAT) in chick neuroretinas was investigated during in ovo development and in monolayer cultures. The enzyme activity was barely detectable on the 6th day of incubation but increased markedly between the 7th and 11th days. The activity increased sharply between the 15th and 17th days and then slowly until hatching. When cell suspensions from 6- to 7-day neuroretinas were cultured as monolayers, CAT specific activity increased rapidly. After 4–5 days in culture, the activity of the enzyme was identical to that found in the neuroretina on the 11th day of incubation. Cells from 9-day neuroretinas also differentiate in monolayer cultures, but with a more irregular pattern. These data show that cholinergic neurons from chick embryo neuroretina differentiate in monolayer cultures without a lag and at the same rate as in vivo.  相似文献   

20.
S C Tsai  R Adamik  Y Kanaho  J L Halpern  J Moss 《Biochemistry》1987,26(15):4728-4733
Guanyl nucleotide binding proteins couple agonist interaction with cell-surface receptors to an intracellular enzymatic response. In the adenylate cyclase system, inhibitory and stimulatory effects are mediated through guanyl nucleotide binding proteins, Gi and Gs, respectively. In the visual excitation complex, the photon receptor rhodopsin is linked to its target, cGMP phosphodiesterase, through transducin (Gt). Bovine brain contains another guanyl nucleotide binding protein, Go. The proteins are heterotrimers of alpha, beta, and gamma subunits; the alpha subunits catalyze receptor-stimulated GTP hydrolysis. To examine the interaction of Go alpha with beta gamma subunits and rhodopsin, the proteins were reconstituted in phosphatidylcholine vesicles. The GTPase activity of Go alpha purified from bovine brain was stimulated by photolyzed, but not dark, rhodopsin and was enhanced by bovine retinal Gt beta gamma or by rabbit liver G beta gamma. Go alpha in the presence of G beta gamma is a substrate for pertussis toxin catalyzed ADP-ribosylation; the modification was inhibited by photolyzed rhodopsin and enhanced by guanosine 5'-O-(2-thiodiphosphate). ADP-Ribosylation of Go alpha by pertussis toxin inhibited photolyzed rhodopsin-stimulated, but not basal, GTPase activity. It would appear from this and prior studies that Go alpha is similar to Gt alpha and Gi alpha; all three proteins exhibit photolyzed rhodopsin-stimulated GTPase activity, are pertussis toxin substrates, and functionally couple to Gt beta gamma. Go alpha (39K) can be distinguished from Gi alpha (41K) but not from Gt alpha (39K) by molecular weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号