首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
The tRNA-like structure of turnip yellow mosaic virus is known to be efficiently recognized and aminoacylated by valyl-tRNA synthetase. The present work reports domains in the isolated tRNA-like fragment (159 terminal nucleotides at the 3'-end of the two viral RNAs) in contact with purified yeast valyl-tRNA synthetase. These domains were determined in protection experiments using chemical and enzymatic structural probes. In addition, new data, re-enforcing the validity of the tertiary folding model for the native RNA, are given. In particular, at the level of the amino acid accepting arm it was found that the two phosphate groups flanking the three guanine residues of loop I are inaccessible to ethylnitrosourea. This is in agreement with a higher-order structure of this loop involving "pseudo knotting", as proposed by Rietveld et al. (1982). Valyl-tRNA synthetase efficiently protects the viral RNA against digestion by single-strand-specific S1 nuclease at the level of the anticodon loop. With cobra venom ribonuclease, specific for double-stranded regions of RNA, protection was detected on both sides of the anticodon arm and at the 5'-ends of loop I, a region that is involved in the building up of the acceptor arm. Loop II, which is topologically homologous to the T-loop of canonical tRNA was likewise protected. Weak protection was observed between arms I and II, and at the 3'-side of arm V. This arm, located at the 5'-side of arm IV (homologous to the D-arm of tRNA), does not participate in the pseudo-knotted model of the valine acceptor arm. Ethylnitrosourea was used to determine the phosphates of the tRNA-like structure in close contact with the synthetase. These are grouped in several stretches scattered over the RNA molecule. In agreement with the nuclease digestion results, protected phosphates are located in arms I, II, and III. Additionally, this chemical probe permits detection of other protected phosphates on the 3'-side of arm IV and on both sides of arm V. When displayed in the three-dimensional model of the tRNA-like structure, protected areas are localized on both limbs of the L-shaped RNA. It appears that valyl-tRNA synthetase embraces the entire tRNA-like structure. This is reminiscent of the interaction model of canonical yeast tRNAVal with its cognate synthetase.  相似文献   

3.
Site-directed mutations were introduced in the connecting loops and one of the two stem regions of the RNA pseudoknot in the tRNA-like structure of turnip yellow mosaic virus RNA. The kinetic parameters of valylation for each mutated RNA were determined in a cell-free extract from wheat germ. Structure mapping was performed on most mutants with enzymic probes, like RNase T1, nuclease S1 and cobra venom ribonuclease. An insertion of four A residues in the four-membered connecting loop L1 that crosses the deep groove of the pseudoknot reduces aminoacylation efficiency. Deletions up to three nucleotides do not affect aminoacylation or RNA pseudoknot formation. Deletion of the entire loop abolishes aminoacylation. Although elimination of the pseudoknot is presumed, this could not be demonstrated. Unlike the mutations in loop L1, all mutations in the three-membered connecting loop L2 that crosses the shallow groove of the RNA pseudoknot decrease the aminoacylation efficiency considerably. Nonetheless, the RNA pseudoknot is still present in most mutated RNAs. These results indicate that a number of mutations can be introduced in both loops without abolishing aminoacylation. Results obtained with the introduction of mismatches and A.U base-pairs in stem S1 of the pseudoknot, containing three G.C base-pairs in wild-type RNA, indicate that the pseudoknot is only marginally stable. Our estimation of the gain of free energy due to the pseudoknot formation is at most 2.0 kcal/mol. The pseudoknot structure can, however, be stabilized upon binding the valyl-tRNA synthetase.  相似文献   

4.
The 3' terminus of TYMV RNA, which possesses tRNA-like properties, has been studied. A 3' terminal fragment of 112 nucleotides was obtained by cleavage with RNase H after hybridization of a synthetic oligodeoxynucleotide to the viral RNA. The accessibility of cytidine and adenosine residues was probed with chemical modification. Enzymatic digestion studies were performed with RNase T1, nuclease S1 and the double-strand specific RNase from the venom of the cobra Naja naja oxiana. A model is proposed for the secondary structure of the 3' terminal region of TYMV RNA comprising 86 nucleotides. The main feature of this secondary structure is the absence of a conventional acceptor stem as present in canonical tRNA. However, the terminal 42 nucleotides can be folded in a tertiary structure which bears strong resemblance with the acceptor arm of canonical tRNA. Comparison of this region of TYMV RNA with that of other RNAs from both the tymovirus group and the tobamovirus group gives support to our proposal for such a three-dimensional arrangement. The consequences for the recognition by TYMV RNA of tRNA-specific enzymes is discussed.  相似文献   

5.
Biophysical properties of RNA from turnip yellow mosaic virus   总被引:1,自引:0,他引:1  
  相似文献   

6.
The secondary structure of the isolated tRNA-like sequence (n=159) present at the 3' OH terminus of turnip yellow mosaic virus RNA has been established from partial nuclease digestion with S1 nuclease and T1, CL3, and Naja oxiana RNases. The fragment folds into a 6-armed structure with two main domains. The first domain, of loose structure and nearest the 5' OH terminus, is composed of one large arm which extends into the coat protein cistron. The second, more compact domain, is composed of the five other arms and most probably contains the structure recognized by valyl-tRNA synthetase. In this domain three successive arms strikingly resemble the T[unk], anticodon, and D arms found in tRNA. Near the amino-acid accepting terminus, however, there is a new stem and loop region not found in standard tRNA. This secondary structure is compatible with a L-shaped three-dimensional organization in which the corner of the L and the anticodon-containing limb are similar to, and the amino-acid accepting region different from, that in tRNA. Ethylnitrosourea accessibility studies have shown similar tertiary structure features in the T[unk] loop of tRNAVal and in the homologous region of the viral RNA.  相似文献   

7.
Summary Double-stranded RNA isolated by phenol extraction from turnip yellow mosaic virus-infected chinese cabbage leaves and from tobacco mosaic virus-9nfected tobacco leaves was rotary shadowed and examined in the electron microscope. The TYMV and TMV molecules are similar in appearance, having uniform width and a linear configuration similar to that previously described for double-stranded RNA and double-stranded DNA molecules. More than 99.5% of the molecules of each virus fall within the range 0.1 to 2.2 , there being a predominance of smaller molecules in both cases (TYMV mean=0.24 , TMV mean 0.42 ). The mode of the larger molecules of TYMV 1.92 and of TMV 1.8 . These values are close to the expected lengths of whole molecules, calculated from biophysical data. Apparently branched molecules were observed in preparations of both TYMV and TMV double-stranded RNA. It was found, however, that the number of such branches per unit length of RNA decreases with a decrease in density of the RNA in the fields examined.  相似文献   

8.
For various groups of plant viruses, the genomic RNAs end with a tRNA-like structure (TLS) instead of the 3' poly(A) tail of common mRNAs. The actual function of these TLSs has long been enigmatic. Recently, however, it became clear that for turnip yellow mosaic virus, a tymovirus, the valylated TLS(TYMV) of the single genomic RNA functions as a bait for host ribosomes and directs them to the internal initiation site of translation (with N-terminal valine) of the second open reading frame for the polyprotein. This discovery prompted us to investigate whether the much larger TLSs of a different genus of viruses have a comparable function in translation. Brome mosaic virus (BMV), a bromovirus, has a tripartite RNA genome with a subgenomic RNA4 for coat protein expression. All four RNAs carry a highly conserved and bulky 3' TLS(BMV) (about 200 nucleotides) with determinants for tyrosylation. We discovered TLS(BMV)-catalyzed self-tyrosylation of the tyrosyl-tRNA synthetase but could not clearly detect tyrosine incorporation into any virus-encoded protein. We established that BMV proteins do not need TLS(BMV) tyrosylation for their initiation. However, disruption of the TLSs strongly reduced the translation of genomic RNA1, RNA2, and less strongly, RNA3, whereas coat protein expression from RNA4 remained unaffected. This aberrant translation could be partially restored by providing the TLS(BMV) in trans. Intriguingly, a subdomain of the TLS(BMV) could even almost fully restore translation to the original pattern. We discuss here a model with a central and dominant role for the TLS(BMV) during the BMV infection cycle.  相似文献   

9.
The tRNA-like structure of the aminoacylatable 3'-end of turnip yellow mosaic virus (TYMV) RNA was submitted to 3-D graphics modelling. A model of this structure has been inferred previously from both biochemical results and sequence comparisons which presents a new RNA folding feature, the "pseudoknot". It has been verified that this structure can be constructed without compromising accepted RNA stereochemical rules, namely base stacking and preferential 3'-endo sugar pucker. The model has aided interpretation of previous structural mapping experiments using chemical and enzymatic probes, and new accessibilities of residues could be predicted and tested. Pseudoknots have been considered as potential splice sites because they form antiparallel helical segments in a single RNA molecule. We have examined this possibility with the constructed 3-D model and could verify the hypothesis on a structural basis. The model presents a striking similarity with canonical tRNA and allows a valuable comparison between the protection patterns of yeast tRNA(Val) and tRNA-like viral RNA by cognate yeast valyl-tRNA synthetase against structural probes.  相似文献   

10.
11.
12.
13.
14.
15.
This paper describes the minimum length of the turnip yellow mosaic virus (TYMV) RNA necessary to fulfill the tRNA-like properties of the viral RNA: 50 to 75 nucleotides and 86 nucleotides from the 3' end of TYMV RNA are sufficient for adenylation and valylation respectively by the Escherichia coli system. The size of the tRNA-like fragments obtained in vitro in the presence of an E. coli, a reticulocyte or a chinese cabbage leaf extract has also been determined. Among the major fragments liberated from the 3' end of TYMV RNA by the three systems are fragments of 117 and 112 nucleotides. In addition, the E. coli extract liberates fragments of 139 and 61 nucleotides, and the reticulocyte lysate fragments of 109, 94, 84, 73 and 46 nucleotides. The cleavage of the viral RNA by several systems in vitro to yield RNA fragments encompassing the tRNA-like sequence suggests that such fragments might also be liberated in vivo.  相似文献   

16.
Studies on the virus of turnip yellow mosaic   总被引:6,自引:0,他引:6  
MARKHAM R  SMITH KM 《Parasitology》1949,39(3-4):330-342
  相似文献   

17.
Empty capsids (artificial top component) of turnip yellow mosaic virus were co-crystallized with an encapsidation initiator RNA hairpin. No clear density was observed for the RNA, but there were clear differences in the conformation of a loop of the coat protein at the opening of the pentameric capsomer (formed by five A-subunits) protruding from the capsid, compared to the corresponding loop in the intact virus. Further differences were found at the N terminus of the A-subunit. These differences have implications for the mechanism of decapsidation of the virus, required for infection.  相似文献   

18.
The tRNA-like structure (TLS) at the 3' end of the turnip yellow mosaic virus genome was replaced with heterologous tRNA-like elements, and with a poly(A) tail, in order to assess its role. Replacement with the valylatable TLSs from two closely related tymoviruses resulted in infectious viruses. In contrast, no systemic symptoms on plants, and only low viral accumulations in protoplasts, were observed for three chimeric genomes with 3' sequences known to enhance mRNA stability and translatability. One of these chimeras had a poly(A) tail, and the others had the TLS with associated upstream pseudoknot tracts from the 3' ends of brome mosaic and tobacco mosaic viruses. The latter two chimeric RNAs were shown to be appropriately folded by demonstrating their aminoacylation in vitro with tyrosine and histidine, respectively. The results show that enhancement of genome stability or gene expression is not the major role of the turnip yellow mosaic virus TLS. The major role is likely to be replicational, dependent on features present in tymoviral TLSs but not in generic tRNA-like structures.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号