首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The evolutionary importance of hybridization as a source of new adaptive genetic variation is rapidly gaining recognition. Hybridization between coyotes and wolves may have introduced adaptive alleles into the coyote gene pool that facilitated an expansion in their geographic range and dietary niche. Furthermore, hybridization between coyotes and domestic dogs may facilitate adaptation to human‐dominated environments. We genotyped 63 ancestry‐informative single‐nucleotide polymorphisms in 427 canids to examine the prevalence, spatial distribution and the ecology of admixture in eastern coyotes. Using multivariate methods and Bayesian clustering analyses, we estimated the relative contributions of western coyotes, western and eastern wolves, and domestic dogs to the admixed ancestry of Ohio and eastern coyotes. We found that eastern coyotes form an extensive hybrid swarm, with all our samples having varying levels of admixture. Ohio coyotes, previously thought to be free of admixture, are also highly admixed with wolves and dogs. Coyotes in areas of high deer density are genetically more wolf‐like, suggesting that natural selection for wolf‐like traits may result in local adaptation at a fine geographic scale. Our results, in light of other previously published studies of admixture in Canis, revealed a pattern of sex‐biased hybridization, presumably generated by male wolves and dogs mating with female coyotes. This study is the most comprehensive genetic survey of admixture in eastern coyotes and demonstrates that the frequency and scope of hybridization can be quantified with relatively few ancestry‐informative markers.  相似文献   

2.
Agouti Signaling Protein (ASIP) controls the localized expression of red and black pigment in the domestic dog through interaction with other genes, such as Melanocortin 1 Receptor and Beta-Defensin 103. Specific ASIP alleles are necessary for many of the coat color patterns, such as black-and-tan and saddle tan. Mutations in 2 ASIP alleles, a(y) and a, have previously been identified. Here, we characterize a mutation consisting of a short interspersed nuclear element (SINE) insertion in intron 1 of ASIP that allows for the differentiation of the a(w) wolf sable and a(t) black-and-tan alleles. The SINE insertion is present in dogs with the a(t) and a alleles but absent from dogs with the a(w) and a(y) alleles. Dogs with the saddle tan phenotype were all a(t)/a(t). Schnauzers were all a(w)/a(w). Genotypes of 201 dogs of 35 breeds suggest that there are only 4 ASIP alleles, as opposed to the 5 or 6 predicted in previous literature. These data demonstrate that the dominance hierarchy of ASIP is a(y) > a(w) > a(t) > a.  相似文献   

3.
The world's most endangered canid is the Ethiopian wolf Canis simensis , which is found in six isolated areas of the Ethiopian highlands with a total population of no more than 500 individuals. Ethiopian wolf populations are declining due to habitat loss and extermination by humans. Moreover, in at least one population, Ethiopian wolves are sympatric with domestic dogs, which may hybridize with them, compete for food, and act as disease vectors. Using molecular techniques, we address four questions concerning Ethiopian wolves that have conservation implications. First, we determine the relationships of Ethiopian wolves to other wolf-like canids by phylogenetic analysis of 2001 base pairs of mitochondrial DNA (mtDNA) sequence. Our results suggest that the Ethiopian wolf is a distinct species more closely related to gray wolves and coyotes than to any African canid. The mtDNA sequence similarity with gray wolves implies that the Ethiopian wolf may hybridize with domestic dogs, a recent derivative of the gray wolf. We examine this possibility through mtDNA restriction fragment analysis and analysis of nine microsatellite loci in populations of Ethiopian wolves. The results imply that hybridization has occurred between female Ethiopian wolves and male domestic dogs in one population. Finally, we assess levels of variability within and between two Ethiopian wolf populations. Although these closely situated populations are not differentiated, the level of variability in both is low, suggesting long-term effective population sizes of less than a few hundred individuals. We recommend immediate captive breeding of Ethiopian wolves to protect their gene pool from dilution and further loss of genetic variability.  相似文献   

4.
We examined variation at a class II major histocompatibility complex (MHC) gene (DRB1) in the captive red wolf population and samples of coyotes from Texas and North Carolina. We found 4 alleles in the 48 red wolves, 8 alleles in the 10 coyotes from Texas and 15 alleles in the 29 coyotes from North Carolina. Two of the four alleles found in red wolves, Caru-2 and Caru-4, were found in both the Texas and North Carolina coyote samples. Allele Caru-1, previously found in gray wolves, was also found in the North Carolina sample. The most frequent red wolf allele, Caru-3, was not found in any of the coyote samples. However, an allele found in both the Texas and North Carolina coyote samples is only one nucleotide (one amino acid) different from this red wolf allele. Overall, it appears from examination of this MHC gene that red wolves are more closely related to coyotes than to gray wolves. There were a number of different types of evidence supporting the action of balancing selection in red wolves. Namely, there was: (i) an excess of heterozygotes compared with expectations; (ii) a higher rate of nonsynonymous than synonymous substitution for the functionally important antigen-binding site positions; (iii) an eight times higher average heterozygosity of individual amino acids at the positions identified as part of the antigen-binding site than those not associated with it; (iv) the amino acid divergence of four red wolf alleles was greater than that expected from a simulation of genetic drift; and (v) the distribution of alleles, and the distributions of amino acids at many positions were more even than expected from neutrality. Examination of the level and pattern of linkage disequilibria between pairs of sites suggest that the heterozygosity, substitution and frequencies at individual amino acids are not highly dependent upon each other.  相似文献   

5.
Three genes, Mc1r, Agouti, and CBD103, interact in a type-switching process that controls much of the pigmentation variation observed in mammals. A deletion in the CBD103 gene is responsible for dominant black color in dogs, while the white-phased black bear (“spirit bear”) of British Columbia, Canada, is the lightest documented color variant caused by a mutation in Mc1r. Rare all-white animals have recently been discovered in a new northeastern population of the coyote in insular Newfoundland and Labrador, Canada. To investigate the causative gene and mutation of white coat in coyotes, we sequenced the three type-switching genes in white and dark-phased animals from Newfoundland. The only sequence variants unambiguously associated with white color were in Mc1r, and one of these variants causes the amino acid variant R306Ter, a premature stop codon also linked to coat color in Golden Retrievers and other dogs with yellow/red coats. The allele carrying R306Ter in coyotes matches that in the Golden Retriever at other variable amino acid sites and hence may have originated in these dogs. Coyotes experienced introgression with wolves and dogs as they colonized northeastern North America, and coyote/Golden Retriever interactions have been observed in Newfoundland. We speculate that natural selection, with or without a founder effect, may contribute to the observed frequency of white coyotes in Newfoundland, as it has contributed to the high frequency of white bears, and of a domestic dog-derived CBD allele in gray wolves.  相似文献   

6.
Polymorphism of PBRs of the major histocompatibility complex (MHC) genes is well recognized, but the polymorphism also extends to proximal promoter regions. Examining DQB1 variability in dogs and wolves, we identified 7 promoter variants and 13 exon 2 alleles among 89 dogs, including a previously unknown DQB1 exon 2 allele, and 8 promoter variants and 9 exon 2 alleles among 85 wolves. As expected from previous studies and from a close chromosomal location, strong linkage disequilibrium was demonstrated in both wolves and dogs by having significantly fewer promoter/exon 2 combinations than expected from simulations of randomized data sets. Interestingly, we noticed weaker haplotypic associations in dogs than in wolves. Dogs had twice as many promoter/exon 2 combinations as wolves and an almost 2-fold difference in the number of exon 2 alleles per promoter variant. This difference was not caused by an admixture of breeds in our group of dogs because the high ratio of observed to expected number of haplotypes persisted within a single dog breed, the German Shepherd. Ewens-Watterson tests indicated that both the promoter and exon 2 are under the balancing selection, and both regions appear to be more recently derived in the dog than in the wolf. Hence, although reasons for the differences are unknown, they may relate to altered selection pressure on patterns of expression. Deviations from normal MHC expression patterns have been associated with autoimmune diseases, which occur frequently in several dog breeds. Further knowledge about these deviations may help us understand the source of such diseases.  相似文献   

7.
At present, the Tibetan Mastiff is the oldest and most ferocious dog in the world. However, the origin of the Tibetan Mastiff and its Phylogenetic relationship with other large breed dogs such as Saint Bernard are unclear. In this study, the primers were designed according to the mitochondrial genome sequence of the domestic dog, and the 2,525 bp mitochondrial sequence, containing the whole sequence of Cytochrome b, tRNA-Thr, tRNA-Pro, and control region of the Tibetan Mastiff, was obtained. Using grey wolves and coyotes as outgroups, the Tibetan Mastiff and 12 breeds of domestic dogs were analyzed in phylogenesis. Tibetan Mastiff, domestic dog breeds, and grey wolves were clustered into a group and coyotes were clustered in a group separately. This indicated that the Tibetan Mastiff and the other domestic dogs originated from the grey wolf, and the Tibetan Mastiff belonged to Carnivora, Canidae, Canis, Canis lupus, Canis lupus familiaris on the animal taxonomy. In domestic dogs, the middle and small breed dogs were clustered at first; German Sheepdog, Swedish Elkhound, and Black Russian Terrier were clustered into one group, and the Tibetan Mastiff, Old English Sheepdog, Leonberger, and Saint Bernard were clustered in another group. This confirmed the viewpoint that many of the famous large breed dogs worldwide Such as Saint Bernard possibly had the blood lineage of the Tibetan Mastiff, based on the molecular data. According to the substitution rate, we concluded that the approximate divergence time between Tibetan Mastiff and grey wolf was 58,000 years before the present (YBP), and the approximate divergence time between other domestic dogs and grey wolf was 42,000 YBP, demonstrating that the time of origin of the Tibetan Mastiff was earlier than that of the other domestic dogs.  相似文献   

8.
Mitochondrial DNA (mtDNA) genotypes of gray wolves and coyotes from localities throughout North America were determined using restriction fragment length polymorphisms. Of the 13 genotypes found among the wolves, 7 are clearly of coyote origin, indicating that genetic transfer of coyote mtDNA into wolf populations has occurred through hybridization. The transfer of mtDNA appears unidirectional from coyotes into wolves because no coyotes sampled have a wolf-derived mtDNA genotype. Wolves possessing coyote-derived genotypes are confined to a contiguous geographic region in Minnesota, Ontario, and Quebec, and the frequency of coyote-type mtDNA in these wolf populations is high (>50%). The ecological history of the hybrid zone suggests that hybridization is taking place in regions where coyotes have only recently become abundant following conversion of forests to farmlands. Dispersing male wolves unable to find conspecific mates may be pairing with female coyotes in deforested areas bordering wolf territories. Our results demonstrate that closely related species of mobile terrestrial vertebrates have the potential for extensive genetic exchange when ecological conditions change suddenly.  相似文献   

9.
The process of dog domestication is still somewhat unresolved. Earlier studies indicate that domestic dogs from all over the world have a common origin in Asia. So far, major histocompatibility complex (MHC) diversity has not been studied in detail in Asian dogs, although high levels of genetic diversity are expected at the domestication locality. We sequenced the second exon of the canine MHC gene DLA–DRB1 from 128 Asian dogs and compared our data with a previously published large data set of MHC alleles, mostly from European dogs. Our results show that Asian dogs have a higher MHC diversity than European dogs. We also estimated that there is only a small probability that new alleles have arisen by mutation since domestication. Based on the assumption that all of the currently known 102 DLA–DRB1 alleles come from the founding wolf population, we simulated the number of founding wolf individuals. Our simulations indicate an effective population size of at least 500 founding wolves, suggesting that the founding wolf population was large or that backcrossing has taken place.  相似文献   

10.
The canine major histocompatibility complex contains highly polymorphic genes, many of which are critical in regulating immune response. Since domestic dogs evolved from Gray Wolves (Canis lupus), common DLA class II alleles should exist. Sequencing was used to characterize 175 Gray Wolves for DLA class II alleles, and data from 1856 dogs, covering 85 different breeds of mostly European origin, were available for comparison. Within wolves, 28 new alleles were identified, all occurring in at least 2 individuals. Three DLA-DRB1, 8 DLA-DQA1, and 6 DLA-DQB1 alleles also identified in dogs were present. Twenty-eight haplotypes were identified, of which 2 three-locus haplotypes, and many DLA-DQA1/DQB1 haplotypes, are also found in dogs. The wolves studied had relatively few dog DLA alleles and may therefore represent a remnant population descended from Asian wolves. The single European wolf included carried a haplotype found in both these North American wolves and in many dog breeds. Furthermore, one wolf DQB1 allele has been found in Shih Tzu, a breed of Asian origin. These data suggest that the wolf ancestors of Asian and European dogs may have had different gene pools, currently reflected in the DLA alleles present in dog breeds.  相似文献   

11.
Eastern wolves have hybridized extensively with coyotes and gray wolves and are listed as a ‘species of special concern’ in Canada. However, a distinct population of eastern wolves has been identified in Algonquin Provincial Park (APP) in Ontario. Previous studies of the diverse Canis hybrid zone adjacent to APP have not linked genetic analysis with field data to investigate genotype‐specific morphology or determine how resident animals of different ancestry are distributed across the landscape in relation to heterogeneous environmental conditions. Accordingly, we studied resident wolves and coyotes in and adjacent to APP to identify distinct Canis types, clarify the extent of the APP eastern wolf population beyond the park boundaries and investigate fine‐scale spatial genetic structure and landscape–genotype associations in the hybrid zone. We documented three genetically distinct Canis types within the APP region that also differed morphologically, corresponding to putative gray wolves, eastern wolves and coyotes. We also documented a substantial number of hybrid individuals (36%) that were admixed between 2 or 3 of the Canis types. Breeding eastern wolves were less common outside of APP, but occurred in some unprotected areas where they were sympatric with a diverse combination of coyotes, gray wolves and hybrids. We found significant spatial genetic structure and identified a steep cline extending west from APP where the dominant genotype shifted abruptly from eastern wolves to coyotes and hybrids. The genotypic pattern to the south and northwest was a more complex mosaic of alternating genotypes. We modelled genetic ancestry in response to prey availability and human disturbance and found that individuals with greater wolf ancestry occupied areas of higher moose density and fewer roads. Our results clarify the structure of the Canis hybrid zone adjacent to APP and provide unique insight into environmental conditions influencing hybridization dynamics between wolves and coyotes.  相似文献   

12.
By the use of isoelectric focusing in polyacrylamide gels serum samples from 146 Alaskan wolves were studied with regard to transferrin (Tf) and esterase (ArE) polymorphism, comparing the phenotypic band patterns with those of selected Norwegian dogs. The study revealed Tf and ArE polymorphisms in the wolf with phenotypic band patterns being indistinguishable from the corresponding ones in dogs. This suggests the occurrence of the same two common Tf alleles in the wolf as in the dog. In the ArE system the results are consistent with the occurrence of three alleles which also occur in dogs whereas a fourth allele, so far not seen in dogs, is seen in Alaskan wolves.  相似文献   

13.
Although serum hormones varied seasonally in all adult animals, only dominant male and female wolves urine-marked. Serum testosterone and urine-marking rates, which increased during the fall/winter breeding season, were positively correlated in both male and female dominant wolves. Estradiol, which increased in conjunction with proestrus and estrus, was not correlated with female urine-marking. These findings suggest that hormonal influence on urine-marking in the wolf is modulated by social factors and contrast with those for both domestic dogs and coyotes, two other members of the genus Canis.  相似文献   

14.
One major concern in wolf (Canis lupus) conservation is the risk of genetic contamination due to crossbreeding with domestic dogs. Although genetic monitoring of wolf populations has become widely used, the behavioural mechanisms involved in wolf-dog hybridization and the detrimental effects of genetic introgression are poorly known. In this study we analysed Y-chromosome microsatellite variation in the recovering Italian wolf population and detected strikingly different allele frequencies between wolves and dogs. Four Y haplotypes were found in 74 analysed male wolves, and all of them were present in a focus wolf population in the Apennines. On the other hand, only 1 haplotype was found in the recolonizing wolf population from the Western Alps. The most common haplotype in a sample of domestic dogs, was also found in 5 wolves, 2 of which revealing a signature of recent hybridization. Moreover, another suspect hybrid carried a private haplotype of possible canine origin. These results give support to the idea that female wolves can breed with male stray dogs in the wild. The Y-chromosome variation in Italian wolves contrasts with the previously observed lack of mitochondrial variation. Further investigations are needed to clarify at what extent historical or recent wolf-dog hybridization events may have contributed to the observed haplotype diversity. In conclusion, the two molecular markers employed in this study represent effective means to trace directional genetic introgression into the wolves male lineage and have the noteworthy advantage of being suitable for analyses on low-quality DNA samples.  相似文献   

15.
The occurrence of black-coated individuals in wolfCanis lupus Linnaeus, 1758 populations is not surprising itself, but their presence in populations recovering from a severe numerical decline has been considered a possible sign of crossbreeding with the domestic dog. In the northern Apennines (Italy), black wolves occur at a non-negligible frequency. In a 3300 km2 area, 22% of wolves observed and 23% of all dead wolves found were represented by animals with a completely black coat. One ‘black’ wolf belonging to the studied population was analysed by a set of microsatellite loci, and no trace of hybridization was found in its ancestry. This result induced us to consider the occurrence of a black phenotype in this area possibly derived from a natural combination of wolf alleles in coat colour determining genes, and not necessarily as the result of crossbreeding with the domestic form.  相似文献   

16.
Top predators are disappearing worldwide, significantly changing ecosystems that depend on top-down regulation. Conflict with humans remains the primary roadblock for large carnivore conservation, but for the eastern wolf (Canis lycaon), disagreement over its evolutionary origins presents a significant barrier to conservation in Canada and has impeded protection for grey wolves (Canis lupus) in the USA. Here, we use 127 235 single-nucleotide polymorphisms (SNPs) identified from restriction-site associated DNA sequencing (RAD-seq) of wolves and coyotes, in combination with genomic simulations, to test hypotheses of hybrid origins of Canis types in eastern North America. A principal components analysis revealed no evidence to support eastern wolves, or any other Canis type, as the product of grey wolf × western coyote hybridization. In contrast, simulations that included eastern wolves as a distinct taxon clarified the hybrid origins of Great Lakes-boreal wolves and eastern coyotes. Our results support the eastern wolf as a distinct genomic cluster in North America and help resolve hybrid origins of Great Lakes wolves and eastern coyotes. The data provide timely information that will shed new light on the debate over wolf conservation in eastern North America.  相似文献   

17.
Although serum hormones varied seasonally in all adult animals, only dominant male and female wolves urine-marked. Serum testosterone and urine-marking rates, which increased during the fall/winter breeding season, were positively correlated in both male and female dominant wolves. Estradiol, which increased in conjunction with proestrus and estrus, was not correlated with female urinemarking. These findings suggest that hormonal influence on urine-marking in the wolf is modulated by social factors and contrast with those for both domestic dogs and coyotes, two other members of the genus Canis.  相似文献   

18.
In this study, the complete sequence of the Tibetan Mastiff mitochondrial genome (mtDNA) was determined, and the phylogenetic relationships between the Tibetan Mastiff and other species of Canidae were analyzed using the coyote (Canis latrans) as an outgroup. The complete nucleotide sequence of the Tibetan Mastiff mtDNA was 16 710 bp, and included 22 tRNA genes, 2S rRNA gene, 13 protein-coding genes and one non-coding region (D-loop region), which is similar to other mammalian mitochondrial genomes. The characteristics of the protein-coding genes, non-coding region, tRNA and rRNA genes among Canidae were analyzed in detail. Neighbor-joining and maximum-parsimony trees of Canids constructed using 12 mitochondrial protein-coding genes showed that as the coyotes and Tibetan wolves clustered together, so too did the gray wolves and domestic dogs, suggesting that the Tibetan Mastiff originated from the gray wolf as did other domestic dogs. Domestic dogs clustered into four clades, implying at least four maternal origins (A to D). The Tibetan Mastiff, which belongs to clade A, appears to be closely related to the Saint Bernard and the Old English Sheepdog.  相似文献   

19.
Conflicting interpretations of the influence of coyote hybridization on wolf recovery in the western Great Lakes (WGL) states have stemmed from disagreement over the systematics of North American wolves. Questions regarding their recovery status have resulted. We addressed these issues with phylogenetic and admixture analysis of DNA profiles of western wolves, WGL states wolves and Wisconsin coyotes developed from autosome and Y-chromosome microsatellites and mitochondrial DNA control region sequence. Hybridization was assessed by comparing the haplotypes exhibited by sympatric wolves and coyotes. Genetic variability and connectivity were also examined. These analyses support the recognition of Canis lycaon as a unique species of North American wolf present in the WGL states and found evidence of hybridization between C. lupus and C. lycaon but no evidence of recent hybridization with sympatric coyotes. The recolonized WGL states wolves are genetically similar to historical wolves from the region and should be considered restored.  相似文献   

20.
Gray wolves (Canis lupus) and coyotes (Canis latrans) generally exhibit intraspecific territoriality manifesting in spatial segregation between adjacent packs. However, previous studies have found a high degree of interspecific spatial overlap between sympatric wolves and coyotes. Eastern wolves (Canis lycaon) are the most common wolf in and around Algonquin Provincial Park (APP), Ontario, Canada and hybridize with sympatric gray wolves and coyotes. We hypothesized that all Canis types (wolves, coyotes, and hybrids) exhibit a high degree of spatial segregation due to greater genetic, morphologic, and ecological similarities between wolves and coyotes in this hybrid system compared with western North American ecosystems. We used global positioning system telemetry and probabilistic measures of spatial overlap to investigate spatial segregation between adjacent Canis packs. Our hypothesis was supported as: (1) the probability of locating wolves, coyotes, and hybrids within home ranges ( $\bar{x}$  = 0.05) or core areas ( $\bar{x}$  < 0.01) of adjacent packs was low; and (2) the amount of shared space use was negligible. Spatial segregation did not vary substantially in relation to genotypes of adjacent packs or local environmental conditions (i.e., harvest regulations or road densities). We provide the first telemetry-based demonstration of spatial segregation between wolves and coyotes, highlighting the novel relationships between Canis types in the Ontario hybrid zone relative to areas where wolves and coyotes are reproductively isolated. Territoriality among Canis may increase the likelihood of eastern wolves joining coyote and hybrid packs, facilitate hybridization, and could play a role in limiting expansion of the genetically distinct APP eastern wolf population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号