首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
3.
Tonoplast vesicles prepared from immature sugarcane ( Saccharum spp., hybrid cv. H65–7052) tissue and purified on a discontinuous dextran gradient take up sucrose. Uptake was stimulated by MgATP. Evidence that the mechanism is linked to proton transport is derived from "pH jump'data and from inhibition of ATP-stimulated sucrose transport by the protonophore carbonyl cyanide m -chlorophenylhydrazone (CCCP) and by the proton-channel blocker of proton-linked ATPases. N. N '-dicyclo-hexylcarbodiimide (DCCD). A saturable phase of sucrose uptake was found at low substrate concentrations, and a linear phase characterized uptake at higher concentrations. Uptake was specific for sucrose, as demonstrated by competition experiments with various sugars. Sucrose uptake by the vesicle fraction was inhibited by KNO3, protonophores and protein modifying reagents, whereas sodium orthovanadate had no effect. Overall, the evidence suggests an ATP-hydrolysis-dependent tonoplasl antiport for sucrose transport, although a more direct influence of ATP on conformational changes in relevant tonoplast proteins cannot be ruled out.  相似文献   

4.
5.
Abstract During incubation of maize scutellum slices in fructose, there was an efflux of sucrose. Efflux was constant for at least 4 h at fructose concentrations of 70 or 100 mol m?3. Efflux was increased by EDTA, and decreased by Ca2+. Efflux was independent of pH after EDTA treatment, but increased from untreated slices when the pH was lowered from 7 to 4. Uranyl ion and PCMBS (p-chloro-mercuribenzenesulfonic acid) abolished sucrose uptake, but were only weak inhibitors of sucrose efflux. These results are consistent with efflux occurring by simple diffusion through aqueous pores, but they do not rule out facilitated diffusion. Rates of sucrose export from the scutellum to the root shoot axis were estimated from measurements of axis respiration and dry weight gain. Sucrose efflux from scutellum slices was only 14-22% of the export rate. Sucrose efflux from the whole scutellum was only 3-4% of the export rate. It is concluded that the observed efflux is from leaky cells and does not represent sucrose on the way to the phloem along a path that includes the apoplast. These results support the idea that the path for sucrose from parenchyma cell to sieve tube in the maize scutellum is entirely symplastic.  相似文献   

6.
As reported in a previous paper (Plant, Cell and Environment 24, 357–365, 2001), introduction of sucrose phosphorylase into the cytosol of potato results in increased respiration, an inhibition of starch accumulation and decreased tuber yield. Herein a more detailed investigation into the effect of sucrose phosphorylase expression on tuber metabolism, in order to understand why storage and growth are impaired is described. (1) Although the activity of the introduced sucrose phosphorylase was low and accounted for less than 10% of that of sucrose synthase its expression led to a decrease in the activities of enzymes of starch synthesis relative to enzymes of glycolysis and relative to total amylolytic activity. (2) Incubation of tuber discs in [14C]glucose revealed that the transformants display a two‐fold increase of the unidirectional rate of sucrose breakdown. However this was largely compensated by a large stimulation of sucrose re‐synthesis and therefore the net rate of sucrose breakdown was not greatly affected. Despite this fact major shifts in tuber metabolism, including depletion of sucrose to very low levels, higher rates of glycolysis, and larger pools of amino acids were observed in these lines. (3) Expression of sucrose phosphorylase led to a decrease of the cellular ATP/ADP ratio and energy charge in intact growing tubers. It was estimated that at least 30% of the ATP formed during respiration is consumed as a result of the large acceleration of the cycle of sucrose breakdown and re‐synthesis in the transformants. Although the absolute rate of starch synthesis in short‐term labelling experiments with discs rose, starch synthesis fell relative to other fluxes including respiration, and the overall starch content of the tubers was lower than in wild‐type tubers. (4) External supply of amino acids to replace sucrose as an osmoticum led to a feed‐back inhibition of glycolysis, but did not restore allocation to starch. (5) However, an external supply of the non‐metabolizable sucrose analogue palatinose – but not sucrose itself – stimulated flux to starch in the transformants. (6) The results indicate that the impaired performance of sucrose phosphorylase‐expressing tubers is attributable to decreased levels of sucrose and increased energy consumption during sucrose futile cycling, and imply that sucrose degradation via sucrose synthase is important to maintain a relatively large sucrose pool and to minimize the ATP consumption required for normal metabolic function in the wild type.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Abstract

Sucrose synthase (SuSy) is the main sucrose breakdown enzyme in plant sink tissues, including nodules, and is a possible candidate for the diversion of plant carbon to arbuscular mycorrhizal (AM) fungi in roots. We tested the involvement of SuSy in AM symbiosis of Glomus intraradices and Pisum sativum (pea). We observed that peas deficient in the predominant root isoform of SuSy were colonized successfully by AM fungi similar to wild-type roots. SuSy protein levels did not increase in roots as AM symbiosis developed, although SuSy protein levels did increase in nodules as the rhizobium symbiosis developed. Our results lead us to conclude that, unlike nodule symbiosis, SuSy protein does not limit or regulate carbon transfer in the AM symbiosis.  相似文献   

14.
The inhibition of fructan accumulation by phosphate was investigated in warm-grown and cold-treated barley (Hordeum vulgare) plants. Detached leaves were incubated in water or phosphate for 24 h under lighting or in darkness. Fructosyltransferase, sucrose phosphate synthase (SPS) and cytosolic fructose-1,6-bisphosphatase (FBPase) activities were subsequently analysed, as well as the content of carbohydrates, hexose-phosphates, phosphate, amino acids and protein. In warm-grown leaves, phosphate decreased fructan accumulation and total carbon in carbohydrates and did not affect protein content. Phosphate increased hexose-phosphates, phosphate and amino acids. Fructosyltransferase and FBPase activities were not affected by phosphate feeding, while SPS activity was inhibited by phosphate in incubations in both light and darkness. In cold-treated leaves, which before incubation had higher SPS activities than warm-grown leaves, phosphate had no inhibitory effect on fructan accumulation, carbohydrate content or total C in carbohydrates. The activities of SPS and FBPase were unaffected by phosphate. The results indicate that phosphate decreases fructan accumulation through an inhibition of SPS whenever this activity is not high before a rise in phosphate content.  相似文献   

15.
A highly synchronized in vitro tuberization system, based on single-node cuttings containing an axillary bud, was used to investigate the activity patterns of enzymes involved in the conversion of hexose phosphates and related products during stolon-to-tuber transition of potato (Solanum tuberosum L.). At tuberization the activity of enzymes involved in glycolysis and the oxidative pentose phosphate pathway (OPPP) showed a small but clear increase. This increase reflects a higher capacity of respiratory(-related) metabolism, presumably due to the onset of rapid cell division in the apical part of the tuberizing stolon. During the phase of successive tuber growth these enzymes decreased in activity, suggesting that the concomitant massive starch accumulation is not accompanied by a large increase in respiration. A high degree of positive correlation between the activities of these enzymes could be observed, implying that the level of respiratory metabolism-related enzymes is co-ordinately regulated by the same mechanism of coarse control. The activity pattern of pyrophosphate:fructose-6-phosphate phosphotransferase (PFP) showed no developmental change and does not resemble the activity pattern of the enzymes participating in respiratory(-related) metabolism. Instead, its level of activity is very likely the result of metabolic regulation. The level of the content of the metabolites UDP-glucose (UDPGlc) and glucose-6-phosphate (Glc6P) decreased after the onset of tuberization. This decline indicates that tuber induction is not accompanied by an appreciable increase in the level of the cytosolic hexose phosphate (hexose-P) content but that it rather remains on a low level, which might be a prerequisite in order to maintain a high net rate of sucrose degradation during tuber development. In contrast to UDPGlc and Glc6P, the content of fructose-1,6-bisphosphate (Fru1,6bisP) showed an increase after tuber induction. The overall activities of ADP-glucose pyrophosphorylase (AGPase) and starch phosphorylase (STP) both showed a large increase after tuber initiation, which is consistent with their presumed role in the process of starch synthesis and accumulation during rapid tuber growth.  相似文献   

16.
The enzyme sucrose: sucrose 1-fructosyltransferase was partially purified from barley leaf growth zones. Four steps (ammonium sulphate precipitation and polyethylene glycol precipitation, followed by chromatography on Concanavalin A-sepharose and hydroxylapatite) yielded a 35-fold purification. The resulting preparation of 1-SST which still contained a number of different activities related to fructan metabolism, was subjected to preparative isoelectric focusing, and sections of the gel were analysed individually for 1-SST and related activities, using sucrose and 1-kestose as substrates. This procedure yielded a 196-fold purification and revealed the presence of two isozymes of 1-SST with pI values of 4.93 and 4.99, as determined by analytical isoelectric focusing of the corresponding fractions. Both isozymes produced glucose and 1-kestose when incubated with sucrose. In addition, small amounts of 6-kestose and tetrasaccharides were formed. In particular, one of the two 1-SST isozymes yielded fructose when incubated with 1-kestose, indicating that it also acts as a fructan exohydrolase. The other isozyme exhibited less fructan exohydrolase activity. Nystose was also degraded by the fructan exohydrolase activity but less than 1-kestose, whereas 6-kestose was not a substrate for the enzyme. Incubation of both 1-SSTs with different concentrations of sucrose showed that the enzyme was not saturated even at 500 mM. As for the barley sucrose: fructan 6-fructosyltransferase, both isozymes of 1-SST yielded two polypeptide bands of molecular weight 50 and 22 kDa upon sodium dodecylsulphate polyacrylamide gel electrophoresis, suggesting their close relationship to invertase (composed of two subunits of similar size), as previously reported for other plants.  相似文献   

17.
Hans Peter Getz 《Planta》1991,185(2):261-268
Sucrose uptake into tonoplast vesicles, which were prepared from red beet (Beta vulgaris L.) vacuoles isolated by two different methods, was stimulated by MgATP. Using the same medium as for osmotic disruption of vacuoles, membrane vesicles were prepared from tissue homogenates of dormant red beet roots and separated by high-speed centrifugation through a discontinuous dextran gradient. A low-density microsomal fraction highly enriched in tonoplast vesicles could be further purified from contaminating ER vesicles by inclusion of 5 mM MgCl2 in the homogenization medium. These vesicles were able to transport sucrose in an ATP-dependent manner against a concentration gradient, whereas vesicles from regions of other densities lacked this feature, indicating that ATP stimulation of sucrose uptake took place only at the tonoplast membrane. Sucrose uptake was optimal at pH 7 in the presence of MgATP and could be stimulated by superimposed pH gradients (vesicle interior acidic) in the absence of MgATP, which is consistent with the operation of a sucrose/H+-antiporter at the tonoplast. Tonoplast vesicles, obtained in high yield from tissue homogenates of red beet roots, exhibited sugar-uptake characteristics comparable to those of intact vacuoles; these characteristics included similarities in K m (1.7 mM), sensitivity to inhibitors and specificity for sucrose.Many experiments were carried out at the Experiment Station of the HSPA, Aiea, Hawaii and financed by an NSF grant to Dr. Maretzki and Mrs. M. Thom.  相似文献   

18.
Sugars are not only metabolic substrates: they also act as signals that regulate the metabolism of plants. Previously, we found that glycolysis is induced in transgenic tubers expressing a yeast invertase in the cytosol but not in those expressing invertase in the apoplast. This suggests that either the low level of sucrose, the increased formation of cytosolic glucose or the increased levels of metabolites downstream of the sucrose cleavage is responsible for the induction of glycolysis in storage organs. In order to discriminate between these possibilities, we cloned and expressed a bacterial sucrose phosphorylase gene from Pseudomonas saccharophila in potato tubers. Due to the phosphorolytic cleavage of sucrose, formation of glucose was circumvented, thus allowing assessment of the importance of cytosolic glucose – and, by implication, flux through hexokinase – in glycolytic induction. Expression of sucrose phosphorylase led to: (i) a decrease in sucrose content, but no decrease in glucose or fructose; (ii) a decrease in both starch accumulation and tuber yield; (iii) increased levels of glycolytic metabolites; (iv) an induction of the activities of key enzymes of glycolysis; and (v) increased respiratory activity. We conclude that the induction of glycolysis in heterotrophic tissues such as potato tubers occurs via a glucose‐independent mechanism.  相似文献   

19.
20.
To search for novel cytotoxic constituents against cancer cells as lead structures for drug development, four new 3-phenylpropanoid-triacetyl sucrose esters, named tomensides A–D (14), and three known analogs (57) were isolated from the leaves of Prunus tomentosa. Their structures were elucidated by spectroscopic analyses (1D, 2D NMR, CD and HRESIMS). The cytotoxic activities of all isolates against four human cancer cell lines (MCF-7, A549, HeLa and HT-29) were assayed, and the results showed that these isolates displayed stronger inhibitory activities compared with positive control 5-fluorouracil. Tomenside A (1) was the most active compound with IC50 values of 0.11–0.62 μM against the four tested cell lines. The structure–activity relationship (SAR) of the isolates was also discussed. The primary screening results indicated that these 3-phenylpropanoid-triacetyl sucrose esters might be valuable source for new potent anticancer drug candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号