首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We examined how acceptability characteristics displayed by 28-day-old seedlings of 12 species of Western Australian Proteaceae affect the likelihood of seedling herbivory in the field. The seedling attributes quantified were cotyledon phenolic, cyanide and nitrogen concentrations, and cotyledon area, thickness and specific leaf area. Only phenolic content was significantly correlated (negatively) with field rates of herbivore attack. This finding shows that the phenomenon of selective herbivore attack on seedlings may be influenced by a specific plant life-history trait, (in this case cotyledon phenolic concentration). In addition, we also studied the interaction between fire, serotiny and herbivory in matched burned and unburned plots. Although herbivore activity was greater in unburned plots, weakly serotinous species were as prone to defoliation as congeneric, strongly serotinous species, even though their seedlings recruit successfully in the absence of fire. This result suggests that seedlings of species able to establish between fires are not better defended against the higher levels of herbivory normally associated with unburned vegetation.  相似文献   

2.
Question: (1) Which factors regulate post‐fire recruitment and spread of the shrub Senecio bracteolatus in Patagonian grasslands? (2) What is the role of the grass Stipa speciosa on S. bracteolatus establishment in the post‐fire succession? Location: Northwest Patagonia, Argentina. Methods: We studied the effect of fire on S. bracteolatus recruitment and density by comparing these variables between burned and unburned grasslands. In burned areas, we compared abiotic characteristics and seedling establishment under the canopy of grasses (S. speciosa) and in gaps (inter‐tussock areas). Post‐fire interactions between S. bracteolatus seedlings and S. speciosa were studied using field and greenhouse experiments. Results: Density of S. bracteolatus was higher in burned than in unburned areas. In burned sites, seedlings were more abundant under tussock grasses, whereas juveniles were more abundant in gaps. Tussocks generated more attenuated micro‐environmental conditions than gaps during stressful summers. Gaps were more abundant in burned sites, while “under tussock” microsites were more frequent in unburned sites. In burned areas, tussocks allowed higher establishment of seedlings (facilitation), but gaps allowed more seedling growth and higher persistence of juveniles. Conclusions: Fire promoted S. bracteolatus recruitment in Patagonian grasslands by increasing the availability of favourable gap microsites. Grass protection for shrub seedlings became negative with time, probably due to competition with grasses. Gaps led to better performance and persistence of shrub plants. Six years after fire, higher shrub recruitment and adult density (observed as a trend) in burned grassland provides an opportunity for potential S. bracteolatus invasion.  相似文献   

3.
Summary Much of the coastal mountains and foothills of central and southern California are covered by a mosaic of grassland, coastal sage scrub, and evergreen sclerophyllous shrubs (chaparral). In many cases, the borders between adjacent plant communities are stable. The cause of this stability is unknown. The purpose of our study was to examine the water use patterns of representative grasses, herbs, and shrubs across a grassland/chaparrel ecotone and determine the extent to which patterns of water use contribute to ecotone stability. In addition, we examined the effects of seed dispersal and animal herbivory. We found during spring months, when water was not limited, grassland species had a much higher leaf conductance to water vapor diffusion than chaparral plants. As the summer drought progressed, grassland species depleted available soil moisture first, bare zone plants second, and chaparral third, with one chaparral species (Quercus durata) showing no evidence of water stress. Soil moisture depletion patterns with depth and time corresponded to plant water status and root depth. Rabbit herbivory was highest in the chaparral and bare zone as indicated by high densities of rabbit pellets. Dispersal of grassland seeds into the chaparral and bare zone was low. Our results support the hypothesis that grassland species deplete soil moisture in the upper soil horizon early in the drought, preventing the establishment of chaparral seedlings or bare zone herbs. Also, grassland plants are prevented from invading the chaparral because of low seed dispersability and high animal herbivory in these regions.  相似文献   

4.
Population structure, fruit production and dispersal, and recruitment of Rhus integrifolia, a gynodioecious sclerophy llous shrub living in coastal chaparral, were studied in two localities in southern California last burned 60 and 90 years ago. Though hermaphroditic plants produce some fruits, only the male-sterile plants bore significant numbers. Among the sample plants, one individual accounted for 50% of the crop measured. Terrestrial animals, through the loss of some seeds taken for consumption, play a decisive role in the seed dispersal, promoting the establishment of seedlings outside the parent's canopy. Birds have not been demonstrated to contribute to long distance dispersal, but they are responsible for dropping 25% of the fruits collected below the R. integrifolia canopies, 36%) of which were completely destroyed. Allelopathic effects were not observed in laboratory assays, and germination is probably not influenced by the species beneath which seeds have been deposited. This pattern can explain the non-aggregated distribution of individuals observed in the studied populations. We conclude that establishment of new individuals has been continuous at both localities and that the populations of R. integrifolia are increasing in these long unburned stands. This may be indicative of a successional trend in unburned chaparral and coastal scrub toward a sclerophy llous woodland.  相似文献   

5.
Abstract The objective of this work was to evaluate postfire environmental effects on the emergence, survival and growth of Prosopis caldenia seedlings in relation to different controlled fire frequencies, seed scarification methods, and planting site. Seedling emergence was significantly higher in experimental units exposed twice and three times to controlled fire than in unburned experimental units. The highest average seedling survival was recorded with triple exposure to controlled fires. Emergence, survival and growth of seedlings from seeds exposed to acid scarification and 600°C for 5 min were higher in the burned experimental units than in the unburned ones. In the former, seedling survival was higher beneath a P. caldenia canopy than in an adjacent open site, though seedling emergence was similar in both planting sites. Our results suggest that postfire conditions characterized by a reduction in the vegetative cover and competition interference and an increase in soil temperatures and nutrients levels (e.g. nitrogen and phosphorus) may facilitate the establishment of P. caldenia seedlings in the Caldenal.  相似文献   

6.
Abstract. This study deals with a quantification of pre- and post-fire seedling establishment and microsite characteristics in two Florida sand pine scrub sites burned in May 1993. In addition, life history characteristics related to seedling establishment are described for five perennial species –Calamintha ashei, Chapmannia floridana, Eriogonum floridanum, Garberia heterophylla and Palafoxia feayi. Post-fire seedling establishment in sand pine scrub was sparse (median = 1, 12 seedling/m2), with 17 of 35 species establishing seedlings. Chapmannia, Eriogonum, Garberia and Palafoxia resprouted and flowered after fire; Eriogonum and Garberia had strong post-fire seedling establishment responses within 19 months post-fire. Calamintha individuals were killed by fire, but this species had a strong post-fire seedling establishment response, presumably from seeds in a soil seed bank. Eriogonum and Calamintha seedlings established preferentially in plots centered on conspecific adults. For these species with poor seed dispersal, spatial patterns of seedling establishment may be influenced more by pre-fire adult plant location than by post-fire microsite conditions. Post-fire seedling density in sand pine scrub was much lower than in California chaparral and South African sand plain lowland fynbos.  相似文献   

7.
Fire is an important agent of disturbance in many tropical ecosystems that can potentially influence plant consumers. Nevertheless, there are few reports on whether levels of plant damage change as a result of fire. Here we present the results of a 1‐yr study evaluating the effects of fire on rates of herbivory and damage by pathogens in leaves of cerrado (Brazilian savanna) tree species. Damage by leaf chewers was over two times greater in burned than in unburned trees. Levels of damage by leaf miners, leaf scrapers, galling insects, and leaf pathogens were relatively low and increased, remained the same, or even decreased as a result of fire. Nevertheless, in all three plant species studied, total herbivore damage was significantly greater in burned than in unburned trees given the preponderance of damage caused by leaf chewers compared with the other types of damage. Leaf chewers, mainly leaf‐cutter ants, caterpillars, and grasshoppers, completely ate over 50 percent of the >2000 leaves we marked in burned trees. That our results were consistent among different plant species with contrasting leaf phenologies suggests that the observed increase in herbivory is a general phenomenon in our study system. Because herbivore pressure is augmented dramatically in recently burned areas, herbivory may act synergistically with fire in influencing the structure of cerrado vegetation.  相似文献   

8.
The occurrence of mature individuals of Pseudotsuga menziesii in stands of Arctostaphylos species mark the initial stages of mixed evergreen forest invasion into chaparral in central coastal California. We planted two cohorts of P. menziesii seeds at three sites under stands of two Arctostaphylos species and Adenostoma fasciculatum in order to determine whether first-year seedling emergence and survival, particularly during the regular summer drought, underlie the spatial distribution of mature trees observed in chaparral. Regardless of the chaparral species they were planted under, P. menziesii seeds that were not protected from vertebrate predation displayed very little emergence and no survival. In contrast, emergence of P. menziesii that were protected from vertebrate predators was much higher but still did not significantly differ among the three chaparral species. However, survival of protected seedlings under Arctostaphylos glandulosa was much greater than under A. fasciculatum, with intermediate survival under Arctostaphylos montana. While mortality of protected seedlings due to insect herbivory, fungal infection, and disturbance displayed no consistent patterns, summer drought mortality appeared to drive the patterns of survival of P. menziesii under the different chaparral species. These emergence, mortality, and survival data suggest that spatial patterns of P. menziesii recruitment in chaparral are driven by first-year summer drought seedling mortality, but only in years when seeds and seedlings are released from vertebrate predation pressure. Because the first-year drought mortality and survival patterns of P. menziesii seedlings differed strongly depending on the chaparral species, we examined the additional hypothesis that these patterns are associated with differences in the availability of soil moisture under different chaparral species. Both higher survival and lower drought mortality of P. menziesii seedlings were associated with higher soil water potential under Arctostaphylos stands during the summer drought, especially in the subsurface soil. The data suggest that Arctostaphylos stands, particularly stands of A. glandulosa, ameliorate xeric summer conditions to a degree that facilitates first-year establishment of P. menziesii and strongly influences spatial distribution of mature trees. Received: 18 September 1998 / Accepted: 23 December 1998  相似文献   

9.
Philip G. Hahn  John L. Orrock 《Oikos》2015,124(4):497-506
Past and present human activities, such as historic agriculture and fire suppression, are widespread and can create depauperate plant communities. Although many studies show that herbivory on focal plants depends on the density of herbivores or the composition of the surrounding plant community, it is unclear whether anthropogenic changes to plant communities alter herbivory. We tested the hypothesis that human activities that alter the plant community lead to subsequent changes in herbivory. At 20 sites distributed across 80 300 hectares, we conducted a field experiment that manipulated insect herbivore access (full exclosures and pseudo‐exclosures) to four focal plant species in longleaf pine woodlands with different land‐use histories (post‐agricultural sites or non‐agricultural sites) and degrees of fire frequency (frequent and infrequent). Plant cover, particularly herbaceous cover, was lower in post‐agricultural and fire suppressed woodlands. Density of the dominant insect herbivore at our site (grasshoppers) was positively related to plant cover. Herbivore access reduced biomass of the palatable forb Solidago odora in frequently burned post‐agricultural sites and in infrequently burned non‐agricultural woodlands and increased mortality of another forb (Pityopsis graminifolia), but did not affect two other less palatable species (Schizachyrium scoparium and Tephrosia virginiana). Herbivory on S. odora exhibited a hump‐shaped response to plant cover, with low herbivory at low and high levels of plant cover. Herbivore density had a weak negative effect on herbivory. These findings suggest that changes in plant cover related to past and present human activities can modify damage rates on focal S. odora plants by altering grasshopper foraging behavior rather than by altering local grasshopper density. The resulting changes in herbivory may have the potential to limit natural recovery or restoration efforts by reducing the establishment or performance of palatable plant species.  相似文献   

10.
Grasslands dominated by exotic annual grasses have replaced native perennial vegetation types in vast areas of California. Prescribed spring fires can cause a temporary replacement of exotic annual grasses by native and non‐native forbs, but generally do not lead to recovery of native perennials, especially where these have been entirely displaced for many years. Successful reintroduction of perennial species after fire depends on establishment in the postfire environment. We studied the effects of vegetation changes after an April fire on competition for soil moisture, a key factor in exotic annual grass dominance. As an alternative to fire, solarization effectively kills seeds of most plant species but with a high labor investment per area. We compared the burn to solarization in a study of establishment and growth of seeds and transplants of the native perennial grass Purple needlegrass (Nassella pulchra) and coastal sage species California sagebrush (Artemisia californica). After the fire, initial seed bank and seedling densities and regular percent cover and soil moisture (0–20 cm) data were collected in burned and unburned areas. Burned areas had 96% fewer viable seeds of the dominant annual grass, Ripgut brome (Bromus diandrus), leading to replacement by forbs from the seed bank, especially non‐native Black mustard (Brassica nigra). In the early growing season, B. diandrus dominating unburned areas consistently depleted soil moisture to a greater extent between rains than forbs in burned areas. However, B. diandrus senesced early, leaving more moisture available in unburned areas after late‐season rains. Nassella pulchra and A. californica established better on plots treated with fire and/or solarization than on untreated plots. We conclude that both spring burns and solarization can produce conditions where native perennials can establish in annual grasslands. However, the relative contribution of these treatments to restoration appears to depend on the native species being reintroduced, and the long‐term success of these initial restoration experiments remains to be determined.  相似文献   

11.
Seedling recruitment in many highly serotinous populations of Pinus coulteri on California's central coast depends almost entirely on periodic, stand-replacing fire. Compared to serotinous pines of the Mediterranean Basin, little detailed information is available on the postfire demography of California closed-cone pines, including P. coulteri. In September 1996 a wildfire burned the 760-ha American Canyon Research Natural Area (RNA). Using aerial photography, we mapped burn severity of P. coulteri-chaparral woodlands and forests within the RNA. From May to September of 1997, we also quantified seedling establishment and mortality in relation to biophysical site characteristics including fire severity. Seventy-six percent of P. coulteri forests and woodlands experienced high-severity burns, 9% moderate-severity burns, and 15% low-severity or unburned. Of the 53 plots used for seedling counts, 70% were high-severity, 26% moderate-severity, and 4% low-severity. Seedling densities 13 months postfire were low (0.21 m–2), but seedling mortality also was low (8.4%). Aerial seed bank size increased from north-facing to south-facing slopes and from high-severity to low-severity burns. Seedling recruitment was unrelated to burn severity and increased with the size of the canopy seed bank (cone density). Many seedlings established from rodent seed caches; 23% of the seedlings established in clumps from seeds cached by Dipodomys agilis, Chaetodipus californicus and Peromyscus maniculatus. Pinus coulteri seeds have low potential for dispersal by wind, but secondary dispersal by rodents moves seeds away from source trees and into neighboring chaparral. We discuss the potential importance of rodent seed caching to postfire demography of California and Mediterranean serotinous pines.  相似文献   

12.
The effects of disturbance on reproduction and plant and seed bank dynamics in the perennial herb Bonamia grandiflora were studied by comparing populations in recently burned, mechanically disturbed, and undisturbed habitats in central Florida over a 3-year period. Plant densities, seed production, and the occurrence of herbivory and predispersal seed predation varied considerably between sites and between years, with recently disturbed sites supporting the densest and most dynamic populations. Death of established plants was rare in all sites. In each site, the soil seed bank was several-fold larger than single season seed rains suggesting that B. grandiflora seeds are long-lived and accumulate in the soil. There was no evidence that postdispersal predation or pathogens have any significant influence on the seed bank dynamics. Fire resulted in large increases in stem densities due to both increased clonal stem production and new genet recruitment from seed. Burning also caused significant increases in the percentage of flowers producing seed and the numbers of capsules and seeds per plant. The seed rain was ten to thirty times greater in the burned site relative to adjacent unburned site during the 3 years after burning. However, additions to the seed bank from the postfire seed rain were balanced by equivalent losses due primarily to seed mortality during fire, and to a much lesser extent due to germination and new genet establishment. As a result, the subsequent densities of seeds stored in the soil in these two sites were similar, indicating that fire results in a significant turnover in the seed bank population but no immediate change in its size. These effects on seed bank dynamics, in addition to new genet recruitment, suggest that periodic fires may play an important role in the maintenance of genetic variability as well as the size of these populations.  相似文献   

13.
The composition and density of soil seed banks beneath co-occurring Adenostoma fasciculatum and Ceanothus greggii shrubs from three chaparral stands last burned 9, 35 and 85 years before 1986 were investigated. The overall density of seeds in the soil, as estimated by germinations under greenhouse conditions, increased with time since fire (ca. 8000 to 25000/m2). However, this increase was due entirely to the accumulation of A. fasciculatum seed in the soil (ca. 2000 to 21000/m2). In contrast, the density of C. greggii seed was different in each of the three stands, but was not correlated with time since fire: maximum densities were recorded from the 35 year old stand (ca. 2000/m2).A total of 31 taxa germinated and 17 occurred in sufficient numbers to be analyzed statistically. Germinable seed densities of three herb species were not influenced by soil source (beneath A. fasciculatum or C. greggii), time since fire, or the direct effects of a controlled fire treatment. Germinable seed densities of a further nine species were significantly influenced by the elapsed time since stands last burned. The densities of four decreased and five increased. Four of the species that increased in seed density over the three stands were annuals, suggesting that the chaparral sub-canopy habitat is not as unfavorable for annuals as is often assumed. The fire treatment decreased germinable seed densities of four annual species by 40–70%, but increased the germinable seed densities of the shrubs A. fasciculatum and C. greggii, and the annual Phacelia brachyloba. Our results indicate that seeds of A. fasciculatum will increase in the soil bank for at least 85 years after fire in chaparral where it is dominant. In contrast, seed reserves of C. greggii appear to be influenced primarily by site-specific patterns of seed production and by the intensity of post-dispersal seed predation.  相似文献   

14.
Abstract. Natural regeneration of Pinus resinosa (red pine) seedlings around mature trees was studied in burned and unburned stands. Growth inhibitory effects of the forest organic matter on red pine seedlings was tested by a stair-step experiment using leachate of forest soil monoliths and also by a seed germination bio-assay using forest floor substrates. To test if higher burning temperatures can remove the allelopathic effects of red pine-Kalmia organic matter, a laboratory bio-assay was conducted by germinating red pine seeds on the organic matter burned at 200, 400, 600 and 800°C. Deposition of dry needles and a thick duff layer under red pine stands affected seedling establishment. Red pine seedling establishment increased with the decreasing thickness of duff layer away from the stump of the seed-bearing trees. Wildfire helped in removing the duff layer and increased seedling establishment. A high fuel load within a 0 - 1 m radius around the tree stump caused a deep burn of the organic matter including part of the soil seed reserve. On a burned-over surface, more seedlings established in a band between 1 and 2 m around the stump than inside and outside the band. Primary root growth of red pine was severely inhibited when the seedlings were grown in unburned forest floor organic matter where Kalmia was the principal understory species. Water leachate of a Pinus resinosa-Kalmia soil monolith was inhibitory to red pine seedling growth. In greenhouse conditions, the seedlings grew well in burned-over soil from a Pinus resinosa stand. Burned organic matter from a red pine forest showed an increase in pH with a burning temperature of 600°C. Primary root growth of red pine seedlings was similarly increased with increasing temperature up to 600°C; at higher temperatures the root length of seedlings did not increase any further.  相似文献   

15.
Surface fires burn extensive areas of tropical forests each year, altering resource availability, biotic interactions, and, ultimately, plant diversity. In transitional forest between the Brazilian cerrado (savanna) and high stature Amazon forest, we took advantage of a long-term fire experiment to establish a factorial study of the interactions between fire, nutrient availability, and herbivory on early plant regeneration. Overall, five annual burns reduced the number and diversity of regenerating stems. Community composition changed substantially after repeated fires, and species common in the cerrado became more abundant. The number of recruits and their diversity were reduced in the burned area, but burned plots closed to herbivores with nitrogen additions had a 14 % increase in recruitment. Diversity of recruits also increased up to 50 % in burned plots when nitrogen was added. Phosphorus additions were related to an increase in species evenness in burned plots open to herbivores. Herbivory reduced seedling survival overall and increased diversity in burned plots when nutrients were added. This last result supports our hypothesis that positive relationships between herbivore presence and diversity would be strongest in treatments that favor herbivory—in this case herbivory was higher in burned plots which were initially lower in diversity. Regenerating seedlings in less diverse plots were likely more apparent to herbivores, enabling increased herbivory and a stronger signal of negative density dependence. In contrast, herbivores generally decreased diversity in more species rich unburned plots. Although this study documents complex interactions between repeated burns, nutrients, and herbivory, it is clear that fire initiates a shift in the factors that are most important in determining the diversity and number of recruits. This change may have long-lasting effects as the forest progresses through succession.  相似文献   

16.
Abstract: Fire‐affected forests are becoming an increasingly important component of tropical landscapes. The impact of wildfires on rainforest communities is, however, poorly understood. In this study the density, species richness and community composition of seedlings, saplings, trees and butterflies were assessed in unburned and burned forest following the 1997/98 El Niño Southern Oscillation burn event in East Kalimantan, Indonesia. More than half a year after the fires, sapling and tree densities in the burned forest were only 2.5% and 38.8%, respectively, of those in adjacent unburned forest. Rarefied species richness and Shannon's H’ were higher in unburned forest than burned forest for all groups but only significantly so for seedlings. There were no significant differences in evenness between unburned and burned forest. Matrix regression and Akaike's information criterion (AIC) revealed that the best explanatory models of similarity included both burning and the distance between sample plots indicating that both deterministic processes (related to burning) and dispersal driven stochastic processes structure post‐disturbance rainforest assemblages. Burning though explained substantially more variation in seedling assemblage structure whereas distance was a more important explanatory variable for trees and butterflies. The results indicate that butterfly assemblages in burned forest were primarily derived from adjacent unburned rainforest, exceptions being species of grass‐feeders such as Orsotriaena medus that are normally found in open, disturbed areas, whereas burned forest seedling assemblages were dominated by typical pioneer genera, such as various Macaranga species that were absent or rare in unburned forest. Tree assemblages in the burned forest were represented by a subset of fire‐resistant species, such as Eusideroxylon zwageri and remnant dominant species from the unburned forest.  相似文献   

17.
Abstract The decline and range reduction of sage grouse populations are primarily due to permanent loss and degradation of sagebrush–grassland habitat. Several studies have shown that sage grouse productivity may be limited by the availability of certain preferred highly nutritious forb species that have also declined within sagebrush ecosystems of the Intermountain West, U.S.A. The purpose of this study was to determine the suitability of three species of forbs for revegetation projects where improving sage grouse habitat is a goal. Species suitability was determined by evaluating the emergence, survival, and reproduction of Crepis modocensis, C. occidentalis, and Astragalus purshii in response to method of establishment (seeding or transplanting), site preparation treatment (burned or unburned), and microsite (mound or interspace) in an Artemisia tridentata ssp. wyomingensis vegetation association in south central Oregon. For seeded plants A. purshii had the lowest emergence (8%) of all three species. Both seeded Crepis species had similar overall emergence (38%). Significantly more Crepis seedlings emerged from shrub mounds in unburned areas (50%) than in any other fire‐by‐microsite treatment (33 to 36%). Approximately 10% more Crepis seedlings survived in mounds compared with interspaces. Nearly twice as many emerging Crepis seedlings survived in the burned areas as opposed to unburned areas (p < 0.01). This resulted in more plant establishment in burned mounds despite higher emergence in unburned mounds. Astragalus purshii seedlings also survived better in burned areas (p = 0.06) but had no differential response to microsite. Fire enhanced survival of both Crepis and A. purshii transplants (p = 0.08 and p = 0.001). We believe additional research is needed to improve A. purshii emergence before it will become an effective plant for restoring sage grouse habitat. Conversely, we conclude that these Crepis species provide a viable revegetation option for improving sage grouse habitat in south central Oregon.  相似文献   

18.
Recruitment, establishment and survivorship of seed- and vegetatively-derived shoots were quantified biweekly in annually burned and infrequently burned tallgrass prairie to investigate the contributions of seed and vegetative reproduction to the maintenance and dynamics of tallgrass prairie plant populations, the demography of seedlings and ramets, and the influence of fire on the demography of grasses and forbs. Clonally produced grass and forb ramets comprised >99%of all established shoots present at the end of the growing season, whereas established seedlings accounted for <1%,emphasizing the rarity of successful seedling establishment and the importance of vegetative reproduction in driving the annual regeneration and dynamics of aboveground plant populations in tallgrass prairie. Most recruitment from vegetative reproduction occurred early in the growing season and was higher in annually burned than infrequently burned sites, although low levels of new stem recruitment occurred continuously throughout the growing season. Peak recruitment on annually burned prairie coincided with peak recruitment of the dominant C4 grasses Andropogon gerardii and Sorghastrum nutans prior to prescribed spring fire, with a second peak in recruitment occurring following fire. On infrequently burned prairie, grass and forb recruitment was highest in early April and declined steadily through May. The naturalized C3 grass, Poa pratensis, was responsible for most of the early recruitment on unburned sites, whereas A. gerardii contributed most to recruitment later in May. Infrequently burned prairie was dominated by these two grasses and contained a larger forb component than annually burned prairie. The principal demographic effect of fire was on ramet natality rather than mortality. Fire regime, plant functional group, or timing of cohort emergence before or after fire did not affect ramet survivorship. C4 grass shoots that emerged early and were damaged by fire showed similar survivorship patterns to tillers that emerged after fire. Differences in species composition between annually burned and infrequently burned prairie are driven by fire effects on vegetative reproduction and appear to be related principally to the effect of fire and detritus accumulation on the development of belowground vegetative meristems of C4 grasses and their emergence dynamics.  相似文献   

19.
We examined reproductive attrition in Fremontodendron decumbens to characterize sexual reproduction in this rare California shrub. Reproductive individuals produced an average of 2,900 flower buds in a season, with no significant difference in bud production between two seasons. Because of intense insect predation, <;2% of initiated flower buds became mature fruits. A threefold decrease in predation of flower buds between seasons resulted in an increase in seed output the second season, indicating that seed production was partially predator-limited. Most seeds (97.8%) were dormant due to an impermeable seed coat. Breaking of the coat, mechanically or by heat, allowed high levels of germination. Chamise charate and ash added to the potting medium resulted in the highest level of germination and emergence. Rodents were more important than birds as seed predators, destroying 90% of seeds under parent shrub canopies within 8–10 months. Seeds already integrated into the seed bank were comparatively safe from predation, relative to newly added seeds. If predation was prevented, seeds were long-lived under field conditions (>;80% survived after 5.75 years). Most seedlings produced in unburned chaparral by planting heat-treated seeds in openings between shrubs were destroyed by predators (rodents and insects). All seedlings that escaped predation died during the summer drought. We concluded that sexual reproduction was limited by (in order of importance): 1) lack of fire, 2) predehiscence predation by insects, and 3) postdehiscence predation by rodents. Size distributions from two populations revealed that, despite the apparent absence of sexual reproduction in unbumed chaparral, two unbumed sites contained a large proportion of individuals in small size classes. Excavation of several small individuals demonstrated they were sprouts from the roots of nearby larger shrubs. Because asexual reproduction by rootsprouting circumvents the high attrition of sexual reproductive effort on unbumed sites, rootsprouting may be a significant reproductive strategy of some ‘sprouter’ species in chaparral.  相似文献   

20.
Post-fire vegetation regeneration was studied for a 6-year period in a 13-year-old-artificial forest consisting of Larix kaempferi with a dense undergrowth of Sasa senanensis. The study site was classified into three fire severity categories according to the degree of Sasa senanensis scorching, that is, a high-severity category, a mid-severity category, and a low-severity category. Study plots were established in areas which fitted the criteria for each category, and in nearby unburned sites. A total of 41 woody species were newly emerged during the 6-year study period in the burned and unburned plots. Only a few seedlings and resprouts emerged in the unburned plots, while many seedlings emerged in the high-severity plots from the first year after fire onward. A high-severity fire that burns the rhizomes of Sasa is necessary for the vegetation recovery by germination of seed. Whereas the establishment of seedlings was restricted to a few years after fire, the regeneration through resprouting continued into the last year of observation. The survival time of resprouts was longer than that of seedlings, and the survival time of shade-tolerant species was longer than that of shade-intolerant species. In contrast, shade-intolerant species grew more rapidly than shade-tolerant species. The plants ability to exceed the maximum height of the Sasa before the bamboo recovers can be critical to the survival of shade-intolerant species. Because resprouts have a stronger resistance to the shade of Sasa than seedlings, the resprouts of shade-tolerant species play a major role in the re-establishment of woody species after fire in sites with considerable Sasa ground-cover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号