首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transposon mutagenesis of the mouse germline   总被引:11,自引:0,他引:11  
  相似文献   

2.
The Sleeping Beauty (SB) transposon system provides the first random insertional mutagen available for germline genetic screens in mice. In preparation for a large scale project to create, map and manage up to 5000 SB insertions, we have developed the Mouse Transposon Insertion Database (MTID; http://mouse.ccgb.umn.edu/transposon/). Each insertion's genomic position, as well as the distance between the insertion and the nearest annotated gene, are determined by a sequence analysis pipeline. Users can search the database using a specified nucleotide or genetic map position to identify the nearest insertion. Mouse reports describe insertions carried, strain, genotype and dates of birth and death. Insertion reports describes chromosome, nucleotide and genetic map positions, as well as nearest gene data from Ensembl, NCBI and Celera. The flanking sequence used to map the insertion is also provided. Researchers will be able to identify insertions of interest and request mice or frozen sperm that carry the insertion.  相似文献   

3.
4.

Background  

Insertional mutagenesis techniques with transposable elements have been popular among geneticists studying model organisms from E. coli to Drosophila and, more recently, the mouse. One such element is the Sleeping Beauty (SB) transposon that has been shown in several studies to be an effective insertional mutagen in the mouse germline. SB transposon vector studies have employed different functional elements and reporter molecules to disrupt and report the expression of endogenous mouse genes. We sought to generate a transposon system that would be capable of reporting the expression pattern of a mouse gene while allowing for conditional expression of a gene of interest in a tissue- or temporal-specific pattern.  相似文献   

5.
6.
Zebrafish craniofacial, skeletal, and tooth development closely resembles that of higher vertebrates. Our goal is to identify viable adult zebrafish mutants that can be used as models for human mineralized craniofacial, dental, and skeletal system disorders. We used a large-scale forward-genetic chemical N-ethyl-nitroso-urea mutagenesis screen to identify 17 early lethal homozygous recessive mutants with defects in craniofacial cartilage elements, and 7 adult homozygous recessive mutants with mineralized tissue phenotypes including craniofacial shape defects, fused sutures, dysmorphic or missing skeletal elements, scoliosis, and neural arch defects. One mutant displayed both an early lethal homozygous phenotype and an adult heterozygous phenotype. These results extend the utility of the zebrafish model beyond the embryo to study human bone and cartilage disorders.  相似文献   

7.
Following the descovery of its transposition activity in mammalian culture systems, the Sleeping Beauty (SB) transposon has since been applied to achieve germline mutagenesis in mice. Initially, the transposition efficiency was found to be low in cultured systems, but its activity in germ cells was unexpectedly high. This difference in transposition efficiency was found to be largely dependent on chromosomal status of the host genomic DNA and transposon vector design. The SB transposon system has been found to be suitable for comprehensive mutagenesis in mice. Therefore, it is an effective tool as a forward genetics screen for tagged insertional mutagenesis in mice.  相似文献   

8.
We used the Tc1/mariner family transposable element Sleeping Beauty (SB) for transgenesis and long-term expression studies in the zebrafish (Danio rerio), a popular organism for clinical disease, vertebrate patterning, and cell biology applications. SB transposase enhanced the transgenesis and expression rate sixfold (from 5 to 31%) and more than doubled the total number of tagged chromosomes over standard, plasmid injection-based transgenesis methods. Molecular analysis of these loci demonstrated a precise integration of these elements into recipient chromosomes with genetic footprints diagnostic of transposition. GFP expression from transposase-mediated integrants was Mendelian through the eighth generation. A blue-shifted GFP variant (BFP) and a red fluorescent protein (DsRed) were also useful transgenesis markers, indicating that multiple reporters are practical for use with SB in zebrafish. We showed that SB is suitable for tissue-specific transgene applications using an abbreviated gamma-crystallin GFP cassette. Finally, we describe a general utility transposon vector for chromosomal engineering and molecular genetics experiments in zebrafish. Together, these data indicate that SB is an efficient tool for transgenesis and expression in zebrafish, and that the transposon will be useful for gene expression in cell biology applications as well as an insertional mutagen for gene discovery during development.  相似文献   

9.
We have tested a synthetic, functional, transposon called Sleeping Beauty for use in mice as a germline insertional mutagen. We describe experiments in which mutagenic, polyadenylation‐site trapping, transposon vectors were introduced into the germline of mice. When doubly transgenic males, expressing the Sleeping Beauty transposase gene (SB10) and harboring poly(A)‐trap transposon vectors, were outcrossed to wild‐type females, offspring were generated with new transposon insertions. The frequency of new transposon insertion is roughly two per male gamete. These new insertions can be passed through the germline to the next generation and can insert into or near genes. We have generated a preliminary library of 24 mice harboring 56 novel insertion sites, including one insertion into a gene represented in the EST database and one in the promoter of the galactokinase (Gck) gene. This technique has promise as a new strategy for forward genetic screens in the mouse or functional genomics. genesis 30:82–88, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

10.
11.
Chromosomal rearrangements have been instrumental in genetic studies in Drosophila. Visibly marked deficiencies (deletions) are used in mapping studies and region-specific mutagenesis screens by providing segmental haploidy required to uncover recessive mutations. Marked recessive lethal inversions are used as balancer chromosomes to maintain recessive lethal mutations and to maintain the integrity of mutagenized chromosomes. In mice, studies on series of radiation-induced deletions that surround several visible mutations have yielded invaluable functional genomic information in the regions analyzed. However, most regions of the mouse genome are not accessible to such analyses due to a lack of marked chromosomal rearrangements. Here we describe a method to generate defined chromosomal rearrangements using the Cre--loxP recombination system based on a published strategy [R. Ramirez-Solis, P. Liu, and A. Bradley, (1995) Nature 378, 720--724]. Various types of rearrangements, such as deletions, duplications, inversions, and translocations, can be engineered using this strategy. Furthermore, the rearrangements can be visibly marked with coat color genes, providing essential reagents for large-scale recessive genetic screens in the mouse. The ability to generate marked chromosomal rearrangements will help to elevate the level of manipulative mouse genetics to that of Drosophila genetics.  相似文献   

12.
The use of mutant mice plays a pivotal role in determining the function of genes, and the recently reported germ line transposition of the Sleeping Beauty (SB) transposon would provide a novel system to facilitate this approach. In this study, we characterized SB transposition in the mouse germ line and assessed its potential for generating mutant mice. Transposition sites not only were clustered within 3 Mb near the donor site but also were widely distributed outside this cluster, indicating that the SB transposon can be utilized for both region-specific and genome-wide mutagenesis. The complexity of transposition sites in the germ line was high enough for large-scale generation of mutant mice. Based on these initial results, we conducted germ line mutagenesis by using a gene trap scheme, and the use of a green fluorescent protein reporter made it possible to select for mutant mice rapidly and noninvasively. Interestingly, mice with mutations in the same gene, each with a different insertion site, were obtained by local transposition events, demonstrating the feasibility of the SB transposon system for region-specific mutagenesis. Our results indicate that the SB transposon system has unique features that complement other mutagenesis approaches.  相似文献   

13.
The Sleeping Beauty (SB) transposase is the most active transposase in vertebrate cells, and the SB transposon system has been used as a tool for insertional mutagenesis and gene delivery. Previous studies have indicated that the frequency of chromosomal transposition is considerably higher in mouse germ cells than in mouse embryonic stem cells, suggesting the existence of unknown mechanisms that regulate SB transposition. Here, we demonstrated that CpG methylation of the transposon region enhances SB transposition. The transposition efficiencies of a methylated transposon and an unmethylated transposon which had been targeted in the same genomic loci by recombination-mediated cassette exchange in mouse erythroleukemia cells were compared, and at least a 100-fold increase was observed in the methylated transposon. CpG methylation also enhanced transposition from plasmids into the genome. Chromatin immunoprecipitation assays revealed that histone H3 methylated at lysine-9, a hallmark of condensed heterochromatin, was enriched at the methylated transposon, whereas the unmethylated transposon formed a relaxed euchromatin structure, as evidenced by enrichment of acetylated histone H3 and reporter gene expression. Possible roles of heterochromatin formation in the transposition reaction are discussed. Our findings indicate a novel relationship between CpG methylation and transposon mobilization.  相似文献   

14.
The active endogenous dTph1 system of the Petunia hybrida mutator line W138 has been used in several forward-genetic mutant screens that were based on visible phenotypes such as flower morphology and color. In contrast, defective symbiotic phosphate (Pi) transport in mycorrhizal roots of Petunia is a hidden molecular phenotype as the symbiosis between plant roots and fungi takes place below ground, and, while fungal colonization can be visualized histochemically, Pi transport and the activity of Pi transporter proteins cannot be assessed visually. Here, we report on a molecular approach in which expression of a mycorrhiza-inducible bi-functional reporter transgene and insertional mutagenesis in Petunia are combined. Bi-directionalization of a mycorrhizal Pi transporter promoter controlling the expression of two reporter genes encoding firefly luciferase and GUS allows visualization of mycorrhiza-specific Pi transporter expression. A population of selectable transposon insertion mutants was established by crossing the transgenic reporter line with the mutator W138, from which the P i transporter downregulated ( ptd1 ) mutant was identified, which exhibits strongly reduced expression of mycorrhiza-inducible Pi transporters in mycorrhizal roots.  相似文献   

15.
The laboratory rat is an invaluable animal model for biomedical research. However, mutant rat resource is still limited, and development of methods for large-scale generation of mutants is anticipated. We recently utilized the Sleeping Beauty (SB) transposon system to develop a rapid method for generating insertional mutant rats. Firstly, transgenic rats carrying single transgenes, namely the SB transposon vector and SB transposase, were generated. Secondly, these single transgenic rats were interbred to obtain doubly-transgenic rats carrying both transgenes. The SB transposon was mobilized in the germline of these doubly-transgenic rats, reinserted into another location in the genome and heterozygous mutant rats were obtained in the progeny. Gene insertion events were rapidly and non-invasively identified by the green fluorescence protein (GFP) reporter incorporated in the transposon vector, which utilizes a polyA-trap approach. Mutated genes were confirmed by either linker ligation-mediated PCR or 3′-rapid amplification of cDNA ends (3′RACE). Endogenous expression profile of the mutated gene can also be visualized using the LacZ gene incorporated as a promoter-trap unit in the transposon vector. This method is straightforward, readily applicable to other transposon systems, and will be a valuable mutant rat resource to the biomedical research community.  相似文献   

16.
Epidemiological and molecular data support the hypothesis that cancer results from a series of acquired somatic mutations. Discovering the initial mutations required for oncogenesis has long been a goal of cancer research. To date, the majority of causative mutations have been identified based on their ability to act in a dominant fashion and/or because they are activated by chromosomal translocations. Forward genetic screens are necessary for unbiased discovery of the remaining unknown oncogenic mutations. Two recent projects have demonstrated the feasibility of using the Sleeping Beauty transposon as an insertional mutagen for cancer gene discovery. In this article we discuss the history of cancer gene discovery and propose novel forward genetic screens using Sleeping Beauty transposon aimed at specific tissues and accelerating the discovery of recessive tumor suppressor genes.  相似文献   

17.
Mutagenic potential of the influenza virus was evaluated. Based on its capacity of inducing recessive lethal mutations in the X chromosome of Drosophila melanogaster, the influenza virus can be classified as a moderate-activity mutagen. Its mutagenicity does not depend on ability to reproduce in the cell system. This virus was shown to disrupt formation of the wing, particularly wing vein M1 + 2. Cytogenetic examination of polytene X chromosomes bearing recessive lethal mutations in Drosophila salivary glands did not reveal chromosome rearrangements. These lethals are assumed to be small deletions or point mutations. The determination of the lethal activity stage of these mutations showed that they disrupt the expression of genes functioning at various developmental stage of Drosophila. Two of them were conditionally lethal (temperature-sensitive). Two of 15 mutations analyzed were mapped to region 2B9-10-3C10-11.  相似文献   

18.
Although the laboratory rat (Rattus norvegicus) is an indispensable experimental animal for biomedical research and drug development, the lack of embryonic stem cell lines hampers gene-knockout studies. Here we report the successful generation of insertional mutant rats using the Sleeping Beauty (SB) transposon system. This would benefit a variety of biomedical research fields for which the rat model is better suited than the mouse model.  相似文献   

19.
20.
转座子Sleeping Beauty和PiggyBac   总被引:2,自引:0,他引:2  
近10年来,得益于转座子Sleeping Beauty(SB)和PiggyBac(PB)的发现和完善,转座子作为一种遗传工程工具在脊椎动物的基因遗传研究中得到广泛应用.SB和PB宿主范围极其广泛,从单细胞生物到哺乳动物都能够发挥作用.转座过程需要转座序列和转座酶的存在,类似于"剪切"、"粘贴"的方式.转座子载体系统转座时可携带一段外源DNA序列,利用这一特性可以用于实现目的基因的转移,现已广泛用于转基因动物、基因功能研究、基因治疗等领域.当转座系统与基因捕获技术相结合,不仅可研究插入突变基因的功能,还能通过所携带的报告基因获得捕获基因的表达图谱.作为非病毒载体的SB和PB转座系统,由于具有高容量、高效率和高安全性等优势,并且PB在转座后不留任何足迹,不会造成遗传物质的不可预测改变,在动物基因工程以及基因治疗方面具有诱人的前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号