首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An obligatory anaerobic, Gram-positive, rod-shaped organism was isolated from faeces of a healthy human donor. It was characterized using biochemical, phenotypic and molecular taxonomic methods. The organism produced acetate, lactate, and ethanol as the major products of glucose fermentation. The G + C content was 53 mol%. Based on comparative 16S rRNA gene sequencing, the unidentified bacterium is a member of the Clostridium subphylum of the Gram-positive bacteria, and most closely related to species of the Clostridium coccoides cluster (rRNA cluster XIVa) [M.D. Collins et al., The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations, Int. J. Syst. Bacteriol. 44 (1994) 812-826]. Clostridium bolteae and Clostridium clostridioforme were identified as the most closely related described species. A 16S rRNA sequence divergence value of > 3% suggested that the isolate represents a new species. This was also supported by the gyrase-encoding gyrB gene sequences. Based on these findings, we propose the novel bacterium from human faeces to be classified as a new species, Clostridium asparagiforme. The type strain of C. asparagiforme is N6 (DSM 15981 and CCUG 48471).  相似文献   

2.
The use of dilution culture techniques to cultivate saccharolytic bacteria present in the anoxic soil of flooded rice microcosms allowed the isolation of three new strains of bacteria, typified by their small cell sizes, with culturable numbers estimated at between 1.2 x 10(5) and 7.3 x 10(5) cells per g of dry soil. The average cell volumes of all three strains were 0.03 to 0.04 microns3, and therefore they can be termed ultramicrobacteria or "dwarf cells." The small cell size is a stable characteristic, even when the organisms grow at high substrate concentrations, and thus is not a starvation response. All three strains have genomic DNA with a mol% G+C ratio of about 63, are gram negative, and are motile by means of a single flagellum. The three new isolates utilized only sugars and some sugar polymers as substrates for growth. The metabolism is strictly fermentative, but the new strains are oxygen tolerant. Sugars are metabolized to acetate, propionate, and succinate. Hydrogen production was not significant. In the presence of 0.2 atm of oxygen, the fermentation end products or ratios did not change. The phylogenetic analysis on the basis of 16S ribosomal DNA (rDNA) sequence comparisons indicates that the new isolates belong to a branch of the Verrucomicrobiales lineage and are closely related to a cloned 16S rDNA sequence (PAD7) recovered from rice paddy field soil from Japan. The isolation of these three strains belonging to the order Verrucomicrobiales from a model rice paddy system, in which rice was grown in soil from an Italian rice field, provides some information on the possible physiology and phenotype of the organism represented by the cloned 16S rDNA sequence PAD7. The new isolates also extend our knowledge on the phenotypic and phylogenetic depths of members of the order Verrucomicrobiales, to date acquired mainly from cloned 16S rDNA sequences from soils and other habitats.  相似文献   

3.
A new thermophilic sulfate-reducing bacterium isolated from the high-temperature White Tiger oil field (Vietnam) is described. Cells of the bacterium are oval (0.4-0.6 by 0.6-1.8 microns), nonmotile, non-spore-forming, and gram-negative. Growth occurs at 45 to 65 degrees C (with an optimum at 60 degrees C) at NaCl concentrations of 0 to 50 g/l. In the course of sulfate reduction, the organism can utilize lactate, pyruvate, malate, fumarate, ethanol, salts of fatty acids (formate, acetate, propionate, butyrate, caproate, palmitate), yeast extract, alanine, serine, cysteine, and H2 + CO2 (autotrophically). In addition to sulfate, the bacterium can use sulfite, thiosulfate, and elemental sulfur as electron acceptors. In the absence of electron acceptors, the bacterium can ferment pyruvate and yeast extract (a yet unrecognized capacity of sulfate reducers) with the formation of acetate and H2. The G + C content of DNA is 60.8 mol %. The level of DNA-DNA hybridization of the isolate (strain 101T) and Desulfacinum infernum (strain B alpha G1T) is as low as 34%. Analysis of the nucleotide sequence of 16S rDNA places strain 101T in the phylogenetic cluster of the Desulfacinum species within the sulfate reducer subdivision of the delta subclass of Proteobacteria. All these results allowed the bacterium studied to be described as a new species, Desulfacinum subterraneum sp. nov., with strain 101 as the type strain.  相似文献   

4.
During studies on the microflora of human feces we have isolated a strictly anaerobic, non-spore-forming, Gram-negative staining organism which exhibits a somewhat variable coccus-shaped morphology. Comparative 16S ribosomal RNA gene sequencing studies show the unidentified organism is phylogenetically a member of the Clostridium leptum supra-generic rRNA cluster and displays a close affinity to some rDNA clones derived from human and pig feces. The nearest named relatives of the unidentified isolate corresponded to Faecalibacterium prausnitzii (formerly Fusobacterium prausnitzii) displaying a 16S rRNA sequence divergence of approximately 9%, with Anaerofilum agile and A. pentosovorans the next closest relatives of the unidentified bacterium (sequence divergence approximately 10%). Based on phenotypic and phylogenetic considerations, it is proposed that the unusual coccoid-shaped organism be classified as a new genus and species, Subdoligranulum variabile. The type strain of S. variabile is BI 114(T) (=CCUG 47106(T)=DSM 15176(T)).  相似文献   

5.
Phenorypic and phylogenetic studies were performed on four isolates of an unidentified gram-negative, microaerotolerant, non-spore-forming, rod-shaped bacterium isolated from the feces of children. The unknown organism was bile resistant and produced acetic acid as the major end product of metabolism of peptides and carbohydrates. It possessed a low DNA G + C content of 31 mol %. Comparative 16S rRNA gene sequencing demonstrated that the four isolates were phylogenetically identical (100% 16S rRNA sequence similarity) and represent a hitherto unknown sub-line within the genus Cetobacterium. The novel bacterium displayed approximately 5% sequence divergence with Cetobacterium ceti, and can be readily distinguished from the latter by physiological and biochemical criteria. Based on phylogenetic and phenotypic evidence, it is proposed that the unknown fecal bacterium be classified in the genus Cetobacterium, as Cetobacterium somerae sp. nov. The proposed type strain of Cetobacterium somerae is WAL 14325(T) (ATCC BAA-474(T) = CCUG 46254T).  相似文献   

6.
A strain of an unidentified strictly anoxic, gram-postive, non-motile Ruminococcus-like bacterium was isolated from a human faecal sample. The organism used carbohydrates as fermentable substrates, produced acetate, succinate, and hydrogen as the major products of glucose metabolism, and possessed a G + C content of 43.3 mol%. The morphological and biochemical characteristics of the organism were consistent with its assignment to the genus Ruminococcus but it did not correspond to any recognized species of this genus. Comparative 16S rRNA gene sequencing showed the unidentified bacterium represents a previously unrecognised sub-line within the Clostridium coccoides rRNA group of organisms. The nearest relative of the unknown bacterium corresponded to Ruminococcus obeum but a 16S rRNA sequence divergence value of >3% demonstrated it represents a different species. Based on the presented findings a new species, Ruminococcus luti, is described. The type strain of Ruminococcus luti is BInIX(T) (DSM 14534T, CCUG 45635T).  相似文献   

7.
A polyphasic taxonomic study was performed on two strains of an unknown Gram-positive, asaccharolytic, nonspore-forming, obligately anaerobic coccus-shaped bacterium isolated from oral subgingival plaque of Labrador retriever dogs. Comparative 16S rRNA gene sequencing confirmed that these isolates were highly related to each other and formed a hitherto unknown linage within the clostridial rRNA XI cluster of organisms. Pairwise analysis demonstrated that the novel organism to be most closely related to members of the genus Peptostreptococcus with 16S rDNA gene sequence similarity values between 92.8% and 96.7%, respectively. The G + C DNA base composition was 30.8 mol% and the major cellular fatty acids included iso-C14:0, iso-C16:0, and iso-C16:0 DMA. Based on biochemical, chemotaxonomic, and phylogenetic evidence it is proposed that the unknown bacterium be classified as a new species, Peptostreptococcus canis sp. nov. The type strain is CCUG 57081T.  相似文献   

8.
A bacterium coded as strain HAP-1 was isolated from a municipal anaerobic digestor for its ability to reduce >7000 ppm perchlorate in wastewaters. The organism is capable of the dissimilatory reduction of perchlorate on chlorate to chloride for energy and growth. It is a Gram-negative, non-sporeforming, obligately anaerobic, motile thin rod. Antibiotic resistance, utilization of carbon substrates and utilization of electron acceptors by bacterium HAP-1 were similar toWolinella succinogenes. The organism's 16S rRNA sequence was 0.75% different from that of the type strain ofW. succinogenes. The fatty acid compositions of the two organisms are very similar. The morphological, physiological and 16S rRNA sequence data indicated that bacterium HAP-1 is a strain ofW. succinogenes that can utilize perchlorate or chlorate as a terminal electron acceptor.  相似文献   

9.
Anaerobic bacteria reductively dechlorinate polychlorinated biphenyls (PCBs) in aquatic sediments, but these microorganisms remain uncultured and, until now, unidentified. Through denaturing gradient gel electrophoresis (DGGE) of 16S rDNA from a highly enriched ortho -PCB dechlorinating culture, the growth of a single microorganism was shown to be dependent upon the presence and dechlorination of 2,3,5,6-tetrachlorobiphenyl. This is the first identification of a microorganism that catalyses the reductive dechlorination of a PCB. The organism, bacterium o -17, has high sequence similarity with the green non-sulphur bacteria and with a group that includes Dehalococcoides ethenogenes . Bacterium o -17 required acetate for dechlorination and growth. H2:CO2 (80:20 at 101 kPa) did not support dechlorination or growth of the dechlorinator. Archaeal 16S rDNA was not detected in actively dechlorinating bromoethanesulphonate-treated non-methanogenic cultures, which indicated that methanogenic Archaea were not required for dechlorination. The consistent association with dechlorinating activity combined with high similarity to other known dechlorinating microorganisms indicates that bacterium o -17 catalyses the reductive ortho -dechlorination of 2,3,5,6-tetrachlorobiphenyl.  相似文献   

10.
A microorganism whose growth is linked to the dechlorination of polychlorinated biphenyls (PCBs) with doubly flanked chlorines was identified. Identification was made by reductive analysis of community 16S ribosomal DNA (rDNA) sequences from a culture enriched in the presence of 2,3,4,5-tetrachlorobiphenyl (2,3,4,5-CB), which was dechlorinated at the para position. Denaturing gradient gel electrophoresis (DGGE) analysis of total 16S rDNA extracted from the culture led to identification of three operational taxonomic units (OTUs 1, 2, and 3). OTU 1 was always detected when 2,3,4,5-CB or other congeners with doubly flanked chlorines were present and dechlorinated. Only OTUs 2 and 3 were detected in the absence of PCBs and when other PCBs (i.e., PCBs lacking doubly flanked chlorines) were not dechlorinated. Partial sequences of OTUs 2 and 3 exhibited 98.2% similarity to the sequence of "Desulfovibrio caledoniensis" (accession no. DCU53465). A sulfate-reducing vibrio isolated from the culture generated OTUs 2 and 3. This organism could not dechlorinate 2,3,4,5-CB. From these results we concluded that OTU 1 represents the dechlorinating bacterium growing in a coculture with a Desulfovibrio sp. The 16S rDNA sequence of OTU 1 is most similar to the 16S rDNA sequence of bacterium o-17 (89% similarity), an ortho-PCB-dechlorinating bacterium. The PCB dechlorinator, designated bacterium DF-1, reductively dechlorinates congeners with doubly flanked chlorines when it is supplied with formate or H(2)-CO(2) (80:20).  相似文献   

11.
From the silty sediments of the Khadyn soda lake (Tuva), a binary sulfidogenic bacterial association capable of syntrophic acetate oxidation at pH 10.0 was isolated. An obligately syntrophic, gram-positive, spore-forming alkaliphilic rod-shaped bacterium performs acetate oxidation in a syntrophic association with a hydrogenotrophic, alkaliphilic sulfate-reducing bacterium; the latter organism was previously isolated and characterized as the new species Desulfonatronum cooperativum. Other sulfate-reducing bacteria of the genera Desulfonatronum and Desulfonatronovibrio can also act as the hydrogenotrophic partner. Apart from acetate, the syntrophic culture can oxidize ethanol, propanol, isopropanol, serine, fructose, and isobutyric acid. Selective amplification of 16S rRNA gene fragments of the acetate-utilizing syntrophic component of the binary culture was performed; it was found to cluster with clones of uncultured gram-positive bacteria within the family Syntrophomonadaceae. The acetate-oxidizing bacterium is thus the first representative of this cluster obtained in a laboratory culture. Based on its phylogenetic position, the new acetate-oxidizing syntrophic bacterium is proposed to be assigned, in a Candidate status, to a new genus and species: "Candidatus Contubernalis alkalaceticum."  相似文献   

12.
Streptomyces strain LL-P018 produces the phaeochromycins, novel anti-inflammatory polyketides. This organism was identified as a strain of Streptomyces phaeochromogenes by physiological and genetic taxonomic analysis. In order to gain greater taxonomic perspective, LL-P018 was compared to related strains from major culture collections by 16S rRNA gene sequence, ribotype, HPLC-MS metabolite profile, and rpoB sequence. Using BioNumerics software, genetic and chemical fingerprint data were integrated via multivariate cluster analysis into a single, robust comparison. Based upon this analysis, strain LL-P018 is very closely related to the type strains of both S. phaeochromogenes and Streptomyces ederensis, indicating that these two types may in fact represent a single species. This novel comparative multi-cluster analysis is most useful for clarifying relationships between closely related species.  相似文献   

13.
A mixed culture of bacteria grown in a bioreactor with methane as a carbon and energy source rapidly oxidized trichloroethylene and chloroform. The most abundant organism was a crescent-shaped bacterium that bound the fluorescent oligonucleotide signature probes that specifically hybridize to serine pathway methylotrophs. The 5S rRNA from this bacterium was found to be 93.5% homologous to the Methylosinus trichosporium OB3b 5S RNA sequence. A type II methanotrophic bacterium, isolated in pure culture from the bioreactor, synthesized soluble methane monooxygenase during growth in a copper-limited medium and was also capable of rapid trichloroethylene oxidation. The bacterium contained the gene that encodes the soluble methane monooxygenase B component on an AseI restriction fragment identical in size to a restriction fragment present in AseI digests of DNA from bacteria in the mixed culture. The sequence of the 16S rRNA from the pure culture was found to be 92 and 94% homologous to the 16S rRNAs of M. trichosporium OB3b and M. sporium, respectively. Both the pure and mixed cultures oxidized naphthalene to naphthol, indicating the presence of soluble methane monooxygenase. The mixed culture also synthesized soluble methane monooxygenase, as evidenced by the presence of proteins that cross-reacted with antibodies prepared against purified soluble methane monooxygenase components from M. trichosporium OB3b on Western blots (immunoblots). It was concluded that a type II methanotrophic bacterium phylogenetically related to Methylosinus species synthesizes soluble methane monooxygenase and is responsible for trichloroethylene oxidation in the bioreactor.  相似文献   

14.
A mixed culture of bacteria grown in a bioreactor with methane as a carbon and energy source rapidly oxidized trichloroethylene and chloroform. The most abundant organism was a crescent-shaped bacterium that bound the fluorescent oligonucleotide signature probes that specifically hybridize to serine pathway methylotrophs. The 5S rRNA from this bacterium was found to be 93.5% homologous to the Methylosinus trichosporium OB3b 5S RNA sequence. A type II methanotrophic bacterium, isolated in pure culture from the bioreactor, synthesized soluble methane monooxygenase during growth in a copper-limited medium and was also capable of rapid trichloroethylene oxidation. The bacterium contained the gene that encodes the soluble methane monooxygenase B component on an AseI restriction fragment identical in size to a restriction fragment present in AseI digests of DNA from bacteria in the mixed culture. The sequence of the 16S rRNA from the pure culture was found to be 92 and 94% homologous to the 16S rRNAs of M. trichosporium OB3b and M. sporium, respectively. Both the pure and mixed cultures oxidized naphthalene to naphthol, indicating the presence of soluble methane monooxygenase. The mixed culture also synthesized soluble methane monooxygenase, as evidenced by the presence of proteins that cross-reacted with antibodies prepared against purified soluble methane monooxygenase components from M. trichosporium OB3b on Western blots (immunoblots). It was concluded that a type II methanotrophic bacterium phylogenetically related to Methylosinus species synthesizes soluble methane monooxygenase and is responsible for trichloroethylene oxidation in the bioreactor.  相似文献   

15.
A new thermophilic sulfate-reducing bacterium isolated from the high-temperature White Tiger oil field (Vietnam) is described. Cells of the bacterium are oval (0.4–0.6 by 0.6–1.8 m), nonmotile, non-spore-forming, and gram-negative. Growth occurs at 45 to 65°C (with an optimum at 60°C) at NaCl concentrations of 0 to 50 g/l. In the course of sulfate reduction, the organism can utilize lactate, pyruvate, malate, fumarate, ethanol, salts of fatty acids (formate, acetate, propionate, butyrate, caproate, palmitate), yeast extract, alanine, serine, cysteine, and H2+ CO2(autotrophically). In addition to sulfate, the bacterium can use sulfite, thiosulfate, and elemental sulfur as electron acceptors. In the absence of electron acceptors, the bacterium can ferment pyruvate and yeast extract (a yet unrecognized capacity of sulfate reducers) with the formation of acetate and H2. The G+C content of DNA is 60.8 mol %. The level of DNA–DNA hybridization of the isolate (strain 101T) and Desulfacinum infernum(strain BG1T) is as low as 34%. Analysis of the nucleotide sequence of 16S rDNA places strain 101Tin the phylogenetic cluster of the Desulfacinumspecies within the sulfate reducer subdivision of the delta subclass of Proteobacteria. All these results allowed the bacterium studied to be described as a new species, Desulfacinum subterraneumsp. nov., with strain 101 as the type strain.  相似文献   

16.
The O-desmethylangolensin-producing Clostridium rRNA cluster XIVa strain SY8519 was isolated from the intestinal flora of a healthy human as a key isoflavonoid-metabolizing bacterium. Here, we report the finished and annotated genomic sequence of this organism.  相似文献   

17.
A strictly anaerobic two-component culture able to grow exponentially with a doubling time of 20 h on a medium containing dichloromethane as the carbon and energy source was characterized. On a medium without sulfate, we observed (per mol of dichloromethane) a mass balance of 2 mol of chloride, 0.26 mol of acetate, 0.05 mol of formate, and 0.25 mol of carbon in biomass. One component of the culture, strain DMB, was identified by a 16S ribosomal DNA analysis as a Desulfovibrio sp. The other component, the gram-positive organism strain DMC, could not be isolated. It was possible, however, to associate strain DMC on a medium containing dichloromethane in a coculture with Acetobacterium woodii or Methanospirillum hungatei. Coculture of strain DMC with the Archaeon M. hungatei allowed us to specifically amplify by PCR the 16S rRNA gene of strain DMC. A phylogenetic analysis of the 16S ribosomal DNA sequence revealed that this organism groups within the radiation of the Clostridium-Bacillus subphylum and exhibits the highest levels of sequence similarity (89%) with Desulfotomaculum orientis and Desulfitobacterium dehalogenans. Since the novel organism strain DMC was able to grow acetogenically with dichloromethane when it was associated with one of three metabolically different partners and since, in contrast to strain DMB, strain DMC contained carbon monoxide dehydrogenase activity, this bacterium is responsible for both the dehalogenation of dichloromethane and the acetogenesis observed in the original two-component culture. The obligatory dependence of strain DMC on a partner during growth with dichloromethane is thought to stem from the need for a growth factor produced by the associated organism.  相似文献   

18.
Eubacterial origin of chlamydiae.   总被引:38,自引:8,他引:30       下载免费PDF全文
The sequence of the 16S rRNA gene from Chlamydia psittaci was determined. Comparison of this sequence with other 16S rRNA sequences showed the organism to be eubacterial. The organism represents a hitherto unrecognized major eubacterial group. However, this group may be peripherally related to the planctomyces and relatives. Although these two groups seem to have very little in common phenotypically (they have been studied in very different ways), cell walls in both cases contain no peptidoglycan.  相似文献   

19.
We have found a Polynucleobacter bacterium in the cytoplasm of Euplotes harpa, a species living in a brackish-water habitat, with a cirral pattern not corresponding to that of the freshwater Euplotes species known to harbor this type of bacteria. The symbiont has been found in three strains of the species, obtained by clonal cultures from ciliates collected in different geographic regions. The 16S rRNA gene sequence of this bacterium identifies it as a member of the beta-proteobacterial genus Polynucleobacter. This sequence shares a high similarity value (98.4-98.5%) with P. necessarius, the type species of the genus, and is associated with 16S rRNA gene sequences of environmental clones and bacterial strains included in the Polynucleobacter cluster (>95%). An oligonucleotide probe was designed to corroborate the assignment of the retrieved sequence to the symbiont and to detect similar bacteria rapidly. Antibiotic experiments showed that the elimination of the bacteria stops the reproductive cycle in E. harpa, as has been shown for the freshwater Euplotes species.  相似文献   

20.
A Gram-negative, alkalotolerant bacterium, isolated from the soil continually drained with industrial wastewater and identified as gamma-proteobacterium by partial 16S rRNA sequence analysis, produced a polyphenol oxidase, which showed laccase but not tyrosinase activity. The organism grew well from pH 6 to 10 and produced laccase maximally at pH 10. The enzyme was stable from pH 3 to 10.6 for at least 24 h and was optimally active at 55 °C and pH 6.5 in a 5 min assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号