首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Image analysis methods were used to separate images of a large macromolecular complex, the chaperonin GroEL, in a preparation in which it is partially liganded to a nonnative protein substrate, glutamine synthetase. The relatively small difference (6%) in size between the chaperonin in its free and complexed forms, and the absence of gross changes in overall conformation, made separation of the two types of particles challenging. Different approaches were evaluated and used for alignment and classification of images, both in two common projections and in three dimensions, yielding 2D averages and a 3D reconstruction. The results of 3D analysis describe the conformational changes effected by binding of this particular protein substrate and demonstrate the utility of 2D analysis as an indicator of structural change in this system.  相似文献   

2.
MOTIVATION: The folding of many proteins in vivo and in vitro is assisted by molecular chaperones. A well-characterized molecular chaperone system is the chaperonin GroEL/GroES from Escherichia coli which has a homolog found in the eukaryotic cytosol called CCT. All chaperonins have a ring structure with a cavity in which the substrate protein folds. An interesting difference between prokaryotic and eukaryotic chaperonins is in the nature of the ATP-mediated conformational changes that their ring structures undergo during their reaction cycle. Prokaryotic chaperonins are known to exhibit a highly cooperative concerted change of their cavity surface while in eukaryotic chaperonins the change is sequential. Approximately 70% of proteins in eukaryotic cells are multi-domain whereas in prokaryotes single-domain proteins are more common. Thus, it was suggested that the different modes of action of prokaryotic and eukaryotic chaperonins can be explained by the need of eukaryotic chaperonins to facilitate folding of multi-domain proteins. RESULTS: Using a 2D square lattice model, we generated two large populations of single-domain and double-domain substrate proteins. Chaperonins were modeled as static structures with a cavity wall with which the substrate protein interacts. We simulated both concerted and sequential changes of the cavity surfaces and demonstrated that folding of single-domain proteins benefits from concerted but not sequential changes whereas double-domain proteins benefit also from sequential changes. Thus, our results support the suggestion that the different modes of allosteric switching of prokaryotic and eukaryotic chaperonin rings have functional implications as it enables eukaryotic chaperonins to better assist multi-domain protein folding.  相似文献   

3.
The human mitochondrial chaperonin is a macromolecular machine that catalyzes the proper folding of mitochondrial proteins and is of vital importance to all cells. This chaperonin is composed of 2 distinct proteins, Hsp60 and Hsp10, that assemble into large oligomeric complexes that mediate the folding of non-native polypeptides in an ATP dependent manner. Here, we report the bacterial expression and purification of fully assembled human Hsp60 and Hsp10 recombinant proteins and that Hsp60 forms a stable tetradecameric double-ring conformation in the absence of co-chaperonin and nucleotide. Evidence of the stable double-ring conformation is illustrated by the 15 Å resolution electron microscopy reconstruction presented here. Furthermore, our biochemical analyses reveal that the presence of a non-native substrate initiates ATP-hydrolysis within the Hsp60/10 chaperonin to commence protein folding. Collectively, these data provide insight into the architecture of the intermediates used by the human mitochondrial chaperonin along its protein folding pathway and lay a foundation for subsequent high resolution structural investigations into the conformational changes of the mitochondrial chaperonin.  相似文献   

4.
The diversity of archaeal communities growing in four hot springs (65-90 °C, pH 6.5) was assessed with 16S rRNA gene primers specific for the domain Archaea. Overall, mainly uncultured members of the Desulfurococcales, the Thermoproteales and the Korarchaeota, were identified. Based on this diversity, a set of chaperonin heat-shock protein (Hsp60) gene sequences from different archaeal species were aligned to design two degenerate primer sets for the amplification of the chaperonin gene: Ths and Kor (which can also detect the korarchaeotal chaperonin gene from one of the samples). A phylogenetic tree was constructed using the chaperonin sequences retrieved and other sequences from cultured representatives. The Alpha and Beta paralogs of the chaperonin gene were observed within the main clades and orthologs among them. Cultivated representatives from these clades were assigned to either paralog in the chaperonin tree. Uncultured representatives observed in the 16S rRNA gene analysis were found to be related to the Desulfurococcales. The topologies of the 16S rRNA gene and chaperonin phylogenetic trees were compared, and similar phylogenetic relationships were observed. Our results suggest that the chaperonin Hsp60 gene may be used as a phylogenetic marker for the clades found in this extreme environment.  相似文献   

5.
The structure of the Escherichia coli chaperonin GroEL has been investigated by tapping-mode atomic force microscopy (AFM) under liquid. High-resolution images can be obtained, which show the up-right position of GroEL adsorbed on mica with the substrate-binding site on top. Because of this orientation, the interaction between GroEL and two substrate proteins, citrate synthase from Saccharomyces cerevisiae with a destabilizing Gly-->Ala mutation and RTEM beta-lactamase from Escherichia coli with two Cys-->Ala mutations, could be studied by force spectroscopy under different conditions. The results show that the interaction force decreases in the presence of ATP (but not of ATPgammaS) and that the force is smaller for native-like proteins than for the fully denatured ones. It also demonstrates that the interaction energy with GroEL increases with increasing molecular weight. By measuring the interaction force changes between the chaperonin and the two different substrate proteins, we could specifically detect GroEL conformational changes upon nucleotide binding.  相似文献   

6.
Although GroE chaperonins and osmolytes had been used separately as protein folding aids, combining these two methods provides a considerable advantage for folding proteins that cannot fold with either osmolytes or chaperonins alone. This technique rapidly identifies superior folding solution conditions for a broad array of proteins that are difficult or impossible to fold by other methods. While testing the broad applicability of this technique, we have discovered that osmolytes greatly simplify the chaperonin reaction by eliminating the requirement for the co-chaperonin GroES which is normally involved in encapsulating folding proteins within the GroEL–GroES cavity. Therefore, combinations of soluble or immobilized GroEL, osmolytes and ATP or even ADP are sufficient to refold the test proteins. The first step in the chaperonin/osmolyte process is to form a stable long-lived chaperonin–substrate protein complex in the absence of nucleotide. In the second step, different osmolyte solutions are added along with nucleotides, thus forming a ‘folding array’ to identify superior folding conditions. The stable chaperonin–substrate protein complex can be concentrated or immobilized prior to osmolyte addition. This procedure prevents-off pathway aggregation during folding/refolding reactions and more importantly allows one to refold proteins at concentrations (~mg/ml) that are substantially higher than the critical aggregation concentration for given protein. This technique can be used for successful refolding of proteins from purified inclusion bodies. Recently, other investigators have used our chaperonin/osmolyte method to demonstrate that a mutant protein that misfolds in human disease can be rescued by GroEL/osmolyte system. Soluble or immobilized GroEL can be easily removed from the released folded protein using simple separation techniques. The method allows for isolation of folded monomeric or oligomeric proteins in quantities sufficient for X-ray crystallography or NMR structural determinations.  相似文献   

7.
The chaperonin GroEL assists protein folding by undergoing ATP-induced conformational changes that are concerted within each of its two back-to-back stacked rings. Here we examined whether concerted allosteric switching gives rise to all-or-none release and folding of domains in a chimeric fluorescent protein substrate, CyPet-YPet. Using this substrate, it was possible to determine the folding yield of each domain from its intrinsic fluorescence and that of the entire chimera by measuring Förster resonance energy transfer between the two domains. Hence, it was possible to determine whether release of one domain is accompanied by release of the other domain (concerted mechanism), or whether their release is not coupled. Our results show that the chimera's release tends to be concerted when folding is assisted by a wild-type GroEL variant, but not when assisted by the F44W/D155A mutant that undergoes a sequential allosteric switch. A connection between the allosteric mechanism of this molecular machine and its biological function in assisting folding is thus established.  相似文献   

8.
Prefoldin is a co-chaperone that captures an unfolded protein substrate and transfers it to the group II chaperonin for completion of protein folding. Group II chaperonin of a hyperthermophilic archaeon, Thermococcus strain KS-1, interacts and cooperates with archaeal prefoldins. Although the interaction sites within chaperonin and prefoldin have been analyzed, the binding mode between jellyfish-like hexameric prefoldin and the double octameric ring group II chaperonin remains unclear. As prefoldin binds the chaperonin β subunit more strongly than the α subunit, we analyzed the binding mode between prefoldin and chaperonin in the context of Thermococcus group II chaperonin complexes of various subunit compositions and arrangements. The oligomers exhibited various affinities for prefoldins according to the number and order of subunits. Binding affinity increased with the number of Cpnβ subunits. Interestingly, chaperonin complexes containing two β subunits adjacently exhibited stronger affinities than other chaperonin complexes containing the same number of β subunits. The result suggests that all four β tentacles of prefoldin interact with the helical protrusions of CPN in the PFD–CPN complex as the previously proposed model that two adjacent PFD β subunits seem to interact with two CPN adjacent subunits.  相似文献   

9.
Structural studies using two‐dimensional (2D) images show limitations in understanding the structure and functions of cellular organelle and protein. To overcome the difficulty, over the last few years 3D reconstruction techniques using electron microscopy have been developed at extremely high speed. In this paper, currently available 3D reconstruction techniques of electron microscopy (such as electron tomography, serial section analysis and single particle analysis) are introduced using our data as examples of the application. The 3D structure of mitochondria with the defect of mitochondrial protein in round worm, Caenorhabditis elegans, through electron tomography, the cell–cell interaction in lamina of Drosophila melanogaster by serial‐section using ultramicrotome and high‐voltage electron microscopy and a thin filament related to muscle contraction in Drosophila melanogaster were used for examples of the application. These results through 3D reconstruction reveal the structural changes in a cellular organelle and protein that had not been shown by 2D structure.  相似文献   

10.
Clarke AR 《Molecular cell》2006,24(2):165-167
Chaperonins in the eukaryotic cytosol are more mysterious than their bacterial counterparts, with a heterogeneity of protein binding surfaces. In a recent issue of Molecular Cell, showed that binding specificity in the TRiC chaperonin is less than absolute and resolved the location of substrate binding surfaces in this chaperonin.  相似文献   

11.
Fast rotational matching of single-particle images   总被引:1,自引:0,他引:1  
The presence of noise and absence of contrast in electron micrographs lead to a reduced resolution of the final 3D reconstruction, due to the inherent limitations of single-particle image alignment. The fast rotational matching (FRM) algorithm was introduced recently for an accurate alignment of 2D images under such challenging conditions. Here, we implemented this algorithm for the first time in a standard 3D reconstruction package used in electron microscopy. This allowed us to carry out exhaustive tests of the robustness and reliability in iterative orientation determination, classification, and 3D reconstruction on simulated and experimental image data. A classification test on GroEL chaperonin images demonstrates that FRM assigns up to 13% more images to their correct reference orientation, compared to the classical self-correlation function method. Moreover, at sub-nanometer resolution, GroEL and rice dwarf virus reconstructions exhibit a remarkable resolution gain of 10-20% that is attributed to the novel image alignment kernel.  相似文献   

12.
Prefoldin is a jellyfish-shaped hexameric co-chaperone of the group II chaperonins. It captures a protein folding intermediate and transfers it to a group II chaperonin for completion of folding. The manner in which prefoldin interacts with its substrates and cooperates with the chaperonin is poorly understood. In this study, we have examined the interaction between a prefoldin and a chaperonin from hyperthermophilic archaea by immunoprecipitation, single molecule observation, and surface plasmon resonance. We demonstrate that Pyrococcus prefoldin interacts most tightly with its cognate chaperonin, and vice versa, suggesting species specificity in the interaction. Using truncation mutants, we uncovered by kinetic analyses that this interaction is multivalent in nature, consistent with multiple binding sites between the two chaperones. We present evidence that both N- and C-terminal regions of the prefoldin beta sub-unit are important for molecular chaperone activity and for the interaction with a chaperonin. Our data are consistent with substrate and chaperonin binding sites on prefoldin that are different but in close proximity, which suggests a possible handover mechanism of prefoldin substrates to the chaperonin.  相似文献   

13.
The structure of a chaperonin caging a substrate protein is not quite clear. We made engineered group II chaperonins fused with a guest protein and analyzed their structural and functional features. Thermococcus sp. KS-1 chaperonin alpha-subunit (TCP) which forms an eightfold symmetric double-ring structure was used. Expression plasmids were constructed which carried two or four TCP genes ligated head to tail in phase and a target protein gene at the 3' end of the linked TCP genes. Electron microscopy showed that the expressed gene products with the molecular sizes of ~120 kDa (di-TCP) and ~230 kDa (tetra-TCP) formed double-ring complexes similar to those of wild-type TCP. The tetra-TCP retained ATPase activity and its thermostability was significantly higher than that of the wild type. A 260-kDa fusion protein of tetra-TCP and green fluorescent protein (GFP, 27 kDa) was able to form the double-ring complexes with green fluorescence. Image analyses indicated that the GFP moiety of tetra-TCP/GFP fusion protein was accommodated in the central cavity, and tetra-TCP/GFP formed the closed-form similar to that crystallographically resolved in group II chaperonins. Furthermore, it was suggested that caging GFP expanded the cavity around the bottom. Using this tetra-TCP fusion strategy, two virus structural proteins (21-25 kDa) toxic to host cells or two antibody fragments (25-36 kDa) prone to aggregate were well expressed in the soluble fraction of Escherichia coli. These fusion products also assembled to double-ring complexes, suggesting encapsulation of the guest proteins. The antibody fragments liberated by site-specific protease digestion exhibited ligand-binding activities.  相似文献   

14.
15.
Chaperonins are molecules that assist proteins during folding and protect them from irreversible aggregation. We studied the chaperonin GroEL and its interaction with the enzyme human carbonic anhydrase II (HCA II), which induces unfolding of the enzyme. We focused on conformational changes that occur in GroEL during formation of the GroEL-HCA II complex. We measured the rate of GroEL cysteine reactivity toward iodo[2-(14)C]acetic acid and found that the cysteines become more accessible during binding of a cysteine free mutant of HCA II. Spin labeling of GroEL with N-(1-oxyl-2,2,5, 5-tetramethyl-3-pyrrolidinyl)iodoacetamide revealed that this additional binding occurred because buried cysteine residues become accessible during HCA II binding. In addition, a GroEL variant labeled with 6-iodoacetamidofluorescein exhibited decreased fluorescence anisotropy upon HCA II binding, which resembles the effect of GroES/ATP binding. Furthermore, by producing cysteine-modified GroEL with the spin label N-(1-oxyl-2,2,5, 5-tetramethyl-3-pyrrolidinyl)iodoacetamide and the fluorescent label 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid, we detected increases in spin-label mobility and fluorescence intensity in GroEL upon HCA II binding. Together, these results show that conformational changes occur in the chaperonin as a consequence of protein substrate binding. Together with previous results on the unfoldase activity of GroEL, we suggest that the chaperonin opens up as the substrate protein binds. This opening mechanism may induce stretching of the protein, which would account for reported unfoldase activity of GroEL and might explain how GroEL can actively chaperone proteins larger than HCA II.  相似文献   

16.
The GroE chaperonin system can adapt to and function at various environmental folding conditions. To examine chaperonin-assisted protein folding at high salt concentrations, we characterized Escherichia coli GroE chaperonin activity in 1.2 m ammonium sulfate. Our data are consistent with GroEL undergoing a conformational change at this salt concentration, characterized by elevated ATPase activity and increased exposure of hydrophobic surface, as indicated by increased binding of the fluorophore bis-(5, 5')-8-anilino-1-naphthalene sulfonic acid to the chaperonin. The presence of the salt results in increased substrate stringency and dependence on the full GroE system for release and productive folding of substrate proteins. Surprisingly, GroEL is fully functional as a thermophilic chaperonin in high concentrations of ammonium sulfate and is stable at temperatures up to 75 degrees C. At these extreme conditions, GroEL can suppress aggregation and mediate refolding of non-native proteins.  相似文献   

17.
Xu WX  Wang J  Wang W 《Proteins》2005,61(4):777-794
Chaperonin-mediated protein folding is complex. There have been diverse results on folding behavior, and the chaperonin molecules have been investigated as enhancing or retarding the folding rate. To understand the diversity of chaperonin-mediated protein folding, we report a study based on simulations using a simplified Gō-type model. By considering effects of affinity between the substrate protein and the chaperonin wall and spatial confinement of the chaperonin cavity, we study the thermodynamics and kinetics of folding of an unfrustrated substrate protein encapsulated in a chaperonin cavity. The affinity makes the hydrophobic residues of the protein bind to the chaperonin wall, and a strong (or weak) affinity results in a large (or small) effect of binding. Compared with the folding in bulk, the folding in chaperonin cavity with different strengths of affinity shows two kinds of behaviors: one with less dependence on the affinity but more reliance on the spatial confinement effect and the other relying strongly on the affinity. It is found that the enhancement or retardation of the folding rate depends on the competition between the spatial confinement and the affinity due to the chaperonin cavity, and a strong affinity produces a slow folding while a weak affinity induces a fast folding. The crossover between two kinds of folding behaviors happens in the case that the favorable effect of confinement is balanced by the unfavorable effect of the affinity, and a critical affinity strength is roughly defined. By analyzing the contacts formed between the residues of the protein and the chaperonin wall and between the residues of the protein themselves, the role of the affinity in the folding processes is studied. The binding of the residues with the chaperonin wall reduces the formation of both native contacts and nonnative contact or mis-contacts, providing a loose structure for further folding after allosteric change of the chaperonin cavity. In addition, 15 single-site-mutated mutants are simulated in order to test the validity of our model and to investigate the importance of affinity. Inspiringly, our results of the folding rates have a good correlation with those obtained from experiments. The folding rates are inversely correlated with the strength of the binding interactions, i.e., the weaker the binding, the faster the folding. We also find that the inner hydrophobic residues have larger effects on the folding kinetics than those of the exterior hydrophobic residues. We suggest that, besides the confinement effect, the affinity acts as another important factor to affect the folding of the substrate proteins in chaperonin systems, providing an understanding of the folding mechanism of the molecular chaperonin systems.  相似文献   

18.
Zhu Z  Li G 《Journal of biomechanics》2011,44(13):2362-2368
Construction of 3D geometric surface models of human knee joint is always a challenge in biomedical engineering. This study introduced an improved statistical shape model (SSM) method that only uses 2D images of a joint to predict the 3D joint surface model. The SSM was constructed using 40 distal femur models of human knees. In this paper, a series validation and parametric analysis suggested that more than 25 distal femur models are needed to construct the SSM; each distal femur should be described using at least 3000 nodes in space; and two 2D fluoroscopic images taken in 45° directions should be used for the 3D surface shape prediction. Using this SSM method, ten independent distal femurs from 10 independent living subjects were predicted using their 2D plane fluoroscopic images. The predicted models were compared to their native 3D distal femur models constructed using their 3D MR images. The results demonstrated that using two fluoroscopic images of the knee, the overall difference between the predicted distal femur surface and the MR image-based surface was 0.16±1.16 mm. These data indicated that the SSM method could be a powerful method for construction of 3D surface geometries of the distal femur.  相似文献   

19.
The class II chaperonin CCT facilitates protein folding by a process that is not well-understood. One striking feature of this chaperonin is its apparent selectivity in vivo, folding only actin, tubulin, and several other proteins. In contrast, the class I chaperonin GroEL is thought to facilitate the folding of many proteins within Escherichia coli. It has been proposed that this apparent selectivity is associated with certain regions of a substrate protein's primary structure. Using limiting amounts of beta-tubulin, beta-tubulin mutants, and beta-tubulin/ftsZ chimeras, we assessed the contribution of select regions of beta-tubulin to CCT binding. In a complementary study, we investigated inter-ring communication in CCT where we exploited polypeptide binding sensitivity to nucleotide to quantitate nucleotide binding. beta-Tubulin bound with a high apparent affinity to CCT in the absence of nucleotide (apparent K(D) approximately 3 nM; its apparent binding free energy, DeltaG, ca. -11.8 kcal/mol). Despite this, the interactions appear to be weak and distributed throughout much of the sequence, although certain sites ("hot spots") may interact somewhat more strongly with CCT. Globally averaged over the beta-tubulin sequence, these interactions appear to contribute ca. -9 to -11 cal/mol per residue, and to account for no more than 50-60% of the total binding free energy. We propose that a conformation change or deformation induced in CCT by substrate binding provides the missing free energy which stabilizes the binary complex. We suggest that by coupling CCT deformation with polypeptide binding, CCT avoids the need for high "intrinsic" affinities for its substrates. This strategy allows for dynamic interactions between chaperonin and bound substrate, which may facilitate folding on the interior surface of CCT in the absence of nucleotide and/or productive release of bound polypeptide into the central cavity upon subsequent MgATP binding. CCT displayed negative inter-ring cooperativity like GroEL. When ring 1 of CCT bound MgATP or beta-tubulin, the affinity of ring 2 for polypeptide or nucleotide was apparently reduced approximately 100-fold.  相似文献   

20.
Recently, the atomic structures of both the closed and open forms of Group 2 chaperonin protein Mm‐cpn were revealed through crystallography and cryo‐electron microscopy. This toroidal‐like chaperonin is composed of two eightfold rings that face back‐to‐back. To gain a computational advantage, we used a symmetry constrained elastic network model (SCENM), which requires only a repeated subunit structure and its symmetric connectivity to neighboring subunits to simulate the entire system. In the case of chaperonin, only six subunits (i.e., three from each ring) were used out of the eight subunits comprising each ring. A smooth and symmetric pathway between the open and closed conformations was generated by elastic network interpolation (ENI). To support this result, we also performed a symmetry‐constrained normal mode analysis (NMA), which revealed the intrinsic vibration features of the given structures. The NMA and ENI results for the representative single subunit were duplicated according to the symmetry pattern to reconstruct the entire assembly. To test the feasibility of the symmetry model, its results were also compared with those obtained from the full model. This study allowed the folding mechanism of chaperonin Mm‐cpn to be elucidated by SCENM in a timely manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号