首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Cystathionine β-synthase (CBS) catalyzes the pyridoxal-5′-phosphate-dependent condensation of l-serine and l-homocysteine to form l-cystathionine in the first step of the transsulfuration pathway. Although effective expression systems for recombinant human CBS (hCBS) have been developed, they require multiple chromatographic steps as well as proteolytic cleavage to remove the fusion partner. Therefore, a series of five expression constructs, each incorporating a 6-His tag, were developed to enable the efficient purification of hCBS via immobilized metal ion affinity chromatography. Two of the constructs express hCBS in fusion with a protein partner, while the others bear only the affinity tag. The addition of an amino-terminal, 6-His tag, in the absence of a protein fusion partner and in the absence or presence of a protease-cleavable linker, was found to be sufficient for the purification of soluble hCBS and resulted in enzyme with 86–91% heme saturation and with activity similar to that reported for other hCBS expression constructs. The continuous assay for l-Cth production, employing cystathionine β-lyase and l-lactate dehydrogenase as coupling enzymes, was employed here for the first time to determine the steady-state kinetic parameters of hCBS, via global analysis, and revealed previously unreported substrate inhibition by l-Hcys (Kil-Hcys = 2.1 ± 0.2 mM). The kinetic parameters for the hCBS-catalyzed hydrolysis of l-Cth to l-Ser and l-Hcys were also determined and the kcat/Kml-Cth of this reaction is only 2-fold lower than the kcat/Kml-SER of the physiological, condensation reaction.  相似文献   

2.
A water-soluble polysaccharide isolated from Dalbergia sissoo Roxb. leaves was purified and major homogeneous fraction obtained by GPC. Complete hydrolysis of the polysaccharide followed by paper chromatography and GLC analysis indicated the presence of l-rhamnose, d-glucuronic acid, d-galactose and d-glucose in molar ratio of 1:1:2:2.33, respectively. Partial hydrolysis of the polysaccharide furnished one tri-[I], one hepta-[II] and one nona-[III] saccharides. Hydrolysis of the oligosaccharide I, II and III followed by GLC analysis furnished d-glucose and l-rhamnose (2:1); l-rhamnose, d-galactose and d-glucuronic acid (1:3:3); and l-rhamnose, d-galactose and d-glucose (1:3:5), respectively. Methylation analysis and periodate oxidation of the oligosaccharide I indicated the presence of two non reducing glucose units linked to rhamnose by 1→2 and 1→4 linkages, respectively. Oligosaccharide II is a branched molecule with a main chain consisting of 1,3-linked β-d-galactopyranosyl (2 mol), 1,3,4 linked α-l-rhamnopyranosyl (1 mol) and 1,4,6 linked β-d-galactopyranosyl unit (1 mol) and non reducing β-d-glucuronic acid at the end along with side chains of β-d-glucouronopyranosyl units (2 mol). Oligosaccharide III is also a branched molecule with a main chain consisting of 1,3,4 linked α-l-rhamnopyranosyl (1 mol), 1,2,4 linked β-d-glucopyranosyl (1 mol), 1,3 and 1,4 linked β-d-galactopyranosyl (2 and 1 mol, respectively) having β-d-glucopyranosyl as a non reducing end.  相似文献   

3.
Three new nervogenic acid glycosides, 1-O-α-l-rhamnopyranosyl 3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoate, 3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoic acid, and bis{3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoyl} 1,2-O-β-d-glucopyranose, which we named condobulbosides A–C, were isolated from a methanol extract of the leaves of Liparis condylobulbon together with an apigenin C-glycoside, schaftoside. Their structures were established on the basis of spectral techniques, namely, UV, IR, HR-MS spectroscopy, both 1D and 2D NMR experiments, and chemical reactions.  相似文献   

4.
The gene encoding α-methylserine aldolase was isolated from Bosea sp. AJ110407. Sequence analysis revealed that the predicted amino acid sequence encoded by the 1320-bp open reading frame was 65.0% similar to the corresponding sequence of the enzyme isolated from Ralstonia sp. AJ110405. The gene was expressed in Escherichia coli, and the recombinant enzyme was purified. Gel filtration revealed the molecular mass of the purified enzyme to be approximately 78 kDa, suggesting that the enzyme is a homodimer. The enzyme exhibited a specific peak at 429 nm in the spectrum and contained 1 mol pyridoxal 5′-phosphate per mole of the subunit. The Vmax value was 1.40 μmol min−1 mg−1, and the Km value was 1.5 mM for the reaction wherein formaldehyde was released from α-methyl-l-serine. This enzyme could also catalyze the reverse reaction, i.e., the synthesis of α-methyl-l-serine from l-alanine and formaldehyde. This activity was inhibited in the excess of formaldehyde; however, α-methyl-l-serine was efficiently produced from l-alanine in the presence of formaldehyde. This method was also applicable for producing α-ethyl-l-serine from l-2-aminobutyric acid.  相似文献   

5.
The soft rot fungus Penicillium purpurogenum secretes a wide variety of xylanolytic enzymes to the medium, among them three α-l-arabinofuranosidases. This work refers to arabinofuranosidase 2 (ABF 2). This enzyme was purified to homogeneity and characterized; it is a glycosylated monomer with a molecular weight of 70 000 and an isoelectric point of 5.3. When assayed with p-nitrophenyl α-l-arabinofuranoside (pNPAra) the enzyme followed Michaelis–Menten kinetics with a KM of 0.098 mm. The optimum pH is 5 and the optimal temperature 60 °C. ABF 2 showed weak activity on natural polymeric substrates, such as sugar beet arabinan, debranched arabinan, and arabinoxylan. These results, together with its low KM (pNPAra) and its activity towards short arabinooligosaccharides, suggest that the enzyme belongs to the exo α-l-arabinosyl hydrolases not active on polymers. The abf2 gene and its cDNA were sequenced, and the gene was found to possess seven introns. The mature protein is 618 amino acids long with a calculated molecular weight of 67 212. Amino acid sequence alignments show that the enzyme belongs to family 51 of the glycosyl hydrolases, although it differs in some properties from other enzymes of this family.  相似文献   

6.
The crude polysaccharide was obtained from Gynostemma pentaphyllum Makino by water extraction followed by ethanol precipitation. The polysaccharide was successively purified by chromatography on DEAE-52 and SephadexG-150 column, and three polysaccharide fractions were obtained and termed GPP1-a, GPP2-b, and GPP3-a, respectively. The administration with GPP1-a markedly prolonged exhaustive exercise time of the mice. Structural features of GPP1-a were investigated by a combination of instrumental and chemical analyses, including atomic force microscope (AFM), scanning electron microscope (SEM), partial acid hydrolysis, periodate oxidation, Smith degradation, methylation analysis, gas chromatography–mass spectrometry (GC–MS) analysis and NMR spectroscopy. The results indicate that GPP1-a has a backbone of (1 → 4)-linked α-d-Glucose residues, which occasionally branches at O-6. The branches are mainly composed of (1 → 6)-linked α-d-Glucose, (1 → 3)-linked β-d-Galactose and (1 → 6)-linked α-d-Galactose residues, and terminated with β-d-Galactose residues and β-l-Arabinose residues.  相似文献   

7.
One fungus, tentatively named Penicillium sp. Li-3, was screened to biosynthesize β-d-mono-glucuronide-glycyrrhizin (GAMG), directly. Using glycyrrhizin as elicitor and the sole carbon source, this strain was capable of expressing β-d-glucuronidase, one intracellular enzyme with high substrate specificity. And glycyrrhizin was hydrolyzed directly into GAMG by enzyme from Penicillium sp. Li-3 with high production. It was found that the mol conversion ratio of this reaction was up to 88.45%. Research about kinetics of β-d-glucuronidase production showed that the cell growth and enzyme production of this strain was partial coupled. During the expressing of target enzyme, carbon catabolite repression existed, so only glycyrrhizin was the best carbon source as well as the elicitor. It was found that the surfactant (Tween 80 0.12%) could improve the ability of enzyme production markedly. Under the condition of initial pH 4.8 of the medium and 32 °C of the culture temperature, the maximum enzyme activity of 181.53 U ml−1 was obtained.  相似文献   

8.
We have purified a novel enzyme from eel white muscle which catalyzes the syntheses of imidazole dipeptides, such as carnosine (β-alanyl-l-histidine), anserine (β-alanyl-π-methyl-l-histidine), and balenine (ophidine; β-alanyl-τ-methyl-l-histidine), directly from their precursors. The enzyme was purified 1130-fold from eel muscle by a series of column chromatographies. Although eel muscle contains a large amount of carnosine and only trace amounts of anserine and balenine, the anserine synthesizing activity was by far the highest. From gel permeation chromatography, the molecular mass of the enzyme was calculated to be 275 kDa. SDS-PAGE of the purified enzyme represented a band around 43 kDa, suggesting that the native enzyme is a hexamer or heptamer. The optimal pH and temperature were around 9.5 and 60 °C, respectively. Km values for β-alanine and π-methyl-l-histidine were 44 and 89 mM, respectively. The enzyme was greatly activated by Zn2+ and inhibited by EDTA. The N-terminal amino acid sequence of 25 residues of the purified enzyme showed 52% amino acid identity to 38–62 residues of zebrafish haptoglobin precursor. The purified enzyme also exhibited hydrolytic activity against these imidazole dipeptides.  相似文献   

9.
The dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) is a critical bacterial enzyme for the construction of the bacterial cell wall. A screen biased toward compounds containing zinc-binding groups (ZBG’s) including thiols, carboxylic acids, boronic acids, phosphonates and hydroxamates has delivered a number of micromolar inhibitors of DapE from Haemophilus influenzae, including the low micromolar inhibitor l-captopril (IC50 = 3.3 μM, Ki = 1.8 μM). In vitro antimicrobial activity was demonstrated for l-captopril against Escherichia coli.  相似文献   

10.
The flagellin of Pseudomonas syringae pv. tabaci is a glycoprotein that contains O-linked oligosaccharides composed of rhamnosyl and 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methylglucosyl residues. These O-linked glycans are released by hydrazinolysis and then labeled at their reducing ends with 2-aminopyridine (PA). A PA-labeled trisaccharide and a PA-labeled tetrasaccharide are isolated by normal-phase high-performance liquid chromatography. These oligosaccharides are structurally characterized using mass spectrometry and NMR spectroscopy. Our data show that P. syringae pv. tabaci flagellin is glycosylated with a tetrasaccharide, 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methyl-Glcp-(1→3)-α-l-Rhap-(1→2)-α-l-Rhap-(1→2)-α-l-Rha-(1→, as well a trisaccharide, 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methyl-Glcp-(1→3)-α-l-Rhap-(1→2)-α-l-Rha-(1→, which was identified in a previous study.  相似文献   

11.
A complex trisaccharide β-d-GalpNAcA-(1 → 4)-β-d-GlcpNAc-(1 → 4)-d-ManpNAc (3) was prepared in a good yield (35%) in a transglycosylation reaction catalyzed by β-N-acetylhexosaminidase from Talaromyces flavus using p-nitrophenyl 2-acetamido-2-deoxy-β-d-galacto-hexodialdo-1,5-pyranoside (1) as a donor followed by the in situ oxidation of the aldehyde functionality by NaClO2. The disaccharide β-d-GlcpNAc-(1 → 4)-d-ManpNAc (2) was used as galactosyl acceptor. A disaccharide β-d-GalpNAcA-(1 → 4)-d-GlcpNAc (4; 39%) originated as a by-product in the reaction. Oligosaccharides comprising a carboxy moiety at C-6 are shown to be very efficient ligands to natural killer cell activation receptors, particularly to human receptor CD69. Thus, oxidized trisaccharide 3 is the best-known oligosaccharidic ligand to this receptor, with IC50 = 2.5 × 10−9 M. The presented method of introducing a β-d-GalpNAcA moiety into carbohydrate structures is versatile and can be applied in the synthesis of other complex oligosaccharides.  相似文献   

12.
The aim of the present study was to evaluate the protective effect of l-glutamine (l-Gln) against cryopreservation injuries on boar sperm. In Experiment 1, l-Gln from 20 to 80 mM was evaluated as a supplement for a standard freezing extender (egg yolk – EY – 20%, and glycerol 3%). No significant improvement (P > 0.05) was obtained for any post-thaw sperm parameter assessed (objective sperm motility – CASA system – and flow cytometric analysis of plasma and acrosomal membrane integrity −SYBR14/PI/PE-PNA− and plasma membrane stability −M540/YoPro1−). In Experiment 2, l-Gln was evaluated as a partial glycerol substitute in the freezing extender. Significant (P < 0.05) enhancement of post-thaw sperm motion parameters was achieved in sperm frozen in the presence of 2% glycerol and 80 mM l-Gln compared to control (3% glycerol). In Experiment 3, l-Gln was evaluated as an EY substitute in the freezing extender, and no functional sperm were recovered after thawing sperm frozen in the presence of l-Gln and the absence of EY. In conclusion, l-Gln has the ability to cryoprotect boar sperm when it is used as a partial glycerol substitute in the freezing extender.  相似文献   

13.
Giardia lamblia arginine deiminase (GlAD), the topic of this paper, belongs to the hydrolase branch of the guanidine-modifying enzyme superfamily, whose members employ Cys-mediated nucleophilic catalysis to promote deimination of l-arginine and its naturally occurring derivatives. G. lamblia is the causative agent in the human disease giardiasis. The results of RNAi/antisense RNA gene-silencing studies reported herein indicate that GlAD is essential for G. lamblia trophozoite survival and thus, a potential target for the development of therapeutic agents for the treatment of giardiasis. The homodimeric recombinant protein was prepared in Escherichia coli for in-depth biochemical characterization. The 2-domain GlAD monomer consists of a N-terminal domain that shares an active site structure (depicted by an in silico model) and kinetic properties (determined by steady-state and transient state kinetic analysis) with its bacterial AD counterparts, and a C-terminal domain of unknown fold and function. GlAD was found to be active over a wide pH range and to accept l-arginine, l-arginine ethyl ester, Nα-benzoyl-l-arginine, and Nω-amino-l-arginine as substrates but not agmatine, l-homoarginine, Nα-benzoyl-l-arginine ethyl ester or a variety of arginine-containing peptides. The intermediacy of a Cys424–alkylthiouronium ion covalent enzyme adduct was demonstrated and the rate constants for formation (k1 = 80 s−1) and hydrolysis (k2 = 35 s−1) of the intermediate were determined. The comparatively lower value of the steady-state rate constant (kcat = 2.6 s−1), suggests that a step following citrulline formation is rate-limiting. Inhibition of GlAD using Cys directed agents was briefly explored. S-Nitroso-l-homocysteine was shown to be an active site directed, irreversible inhibitor whereas Nω-cyano-l-arginine did not inhibit GlAD but instead proved to be an active site directed, irreversible inhibitor of the Bacillus cereus AD.  相似文献   

14.
A new l-amino acid oxidase (LAAO) was isolated from the Central Asian cobra Naja naja oxiana venom by size exclusion, ion exchange and hydrophobic chromatography. The N-terminal sequence and the internal peptide sequences share high similarity with other snake venom l-amino acid oxidases, especially with those isolated from elapid venoms. The enzyme is stable at low temperatures (− 20 °C, − 70 °C) and loses its activity by heating at 70 °C. Specific substrates for the isolated protein are l-phenylalanine, l-tryptophan, l-methionine and l-leucine. The enzyme has antibacterial activity inhibiting the growth of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. N. naja oxiana LAAO dose-dependently inhibited ADP- or collagen-induced platelet aggregation with IC50 of 0.094 μM and 0.036 μM, respectively. The antibacterial and anti-aggregating activity was abolished by catalase.  相似文献   

15.
Through the screening of microorganisms capable of utilizing α-methylserine, three representative strains belonging to the bacterial genera Paracoccus, Aminobacter, and Ensifer were selected as potent producers of α-methylserine hydroxymethyltransferase, an enzyme that catalyzes the interconversion between α-methyl-l-serine and d-alanine via tetrahydrofolate. Among these strains, Paracoccus sp. AJ110402 was selected as the strain exhibiting the highest α-methylserine hydroxymethyltransferase activity. The enzyme was purified to homogeneity from a cell-free extract of this strain. The native enzyme is a homodimer with apparent molecular mass of 85 kDa and contains 1 mol of pyridoxal-5′-phosphate per mol of the subunit. The Km for α-methyl-l-serine and tetrahydrofolate was 0.54 mM and 73 μM, respectively. The gene from Paracoccus sp. AJ110402 encoding α-methylserine hydroxymethyltransferase was cloned and expressed in Escherichia coli. Sequence analysis revealed an open reading frame of 1278 bp, encoding a polypeptide with a calculated molecular mass of 46.0 kDa. Using E. coli cells as whole-cell catalysts, 9.7 mmol of α-methyl-l-serine was stereoselectively obtained from 15 mmol of d-alanine and 13.2 mmol of formaldehyde.  相似文献   

16.
An amperometric biosensor was developed for the interference-free determination of l-glutamate with a bienzyme-based Clark electrode. This sensor is based on the specific dehydrogenation by l-glutamate dehydrogenase (GLDH, EC 1.4.1.3) in combination with salicylate hydroxylase (SHL, EC 1.14.13.1). The enzymes were entrapped by a poly(carbamoyl) sulfonate (PCS) hydrogel on a Teflon membrane. The principle of the determination scheme is as follows: the specific detecting enzyme, GLDH, catalyses the specific dehydrogenation of l-glutamate consuming NAD+. The product, NADH, initiates the irreversible decarboxylation and the hydroxylation of salicylate by SHL in the presence of oxygen. This results in a detectable signal due to the SHL-enzymatic consumptions of dissolved oxygen in the measurement of l-glutamate. The sensor has a fast steady-state measuring time of 20 s with a quick response (1 s) and a short recovery (1 min). It shows a linear detection range between 10 μM and 1.5 mM l-glutamate with a detection limit of 3.0 μM. A Teflon membrane, which is used to fabricate the sensor, makes the determination to avoid interferences from other amino acids and electroactive substances.  相似文献   

17.
A synthetic gene encoding a Streptomyces l-proline-3-hydroxylase was constructed and used to produce the hydroxylase protein in recombinant Escherichia coli. A fermentation process for growth of this recombinant E. coli for enzyme production was scaled-up to 250 L. A biotransformation process was developed using cell suspensions of the recombinant E. coli and subsequently scaled-up to 10 L for conversion of l-proline to cis-3-hydroxy-l-proline. A reaction yield of 85 M% and d.e. of 99.9% was obtained for cis-3-hydroxy-l-proline.  相似文献   

18.
The retaining endo-1,3-β-d-glucanase (LV) with molecular mass of 36 kDa was purified to homogeneity from the crystalline styles of scallop Mizuhopecten yessoensis. The purified enzyme catalyzed hydrolysis of laminaran as endo-enzyme forming glucose, laminaribiose and higher oligosaccharides as products (Km  600 μg/mL). The 1,3-β-d-glucanase effectively catalyzed transglycosylation reaction that is typical of endo-enzymes too. Optima of pH and temperature were at 4.5 and 45 °C, respectively. cDNA encoding the endo-1,3-β-d-glucanase was cloned by PCR-based methods. It contained an open reading frame that encoded 339-amino acids protein. The predicted endo-1,3-β-d-glucanase amino acid sequence included a characteristic domain of the glycosyl hydrolases family 16 and revealed closest homology with 1,3-β-d-glucanases from bivalve Pseudocardium sachalinensis, sea urchin Strongylocentrotus purpuratus and invertebrates lipopolysaccharide and β-1,3-glucan-binding proteins.The fold of the LV was more closely related to κ-carrageenase, agarase and 1,3;1,4-β-d-glucanase from glycosyl hydrolases family 16. Homology model of the endo-1,3-β-d-glucanase from M. yessoensis was obtained with MOE on the base of the crystal structure of κ-carrageenase from P. carrageonovora as template. Putative three-dimensional structures of the LV complexes with substrate laminarihexaose or glucanase inhibitor halistanol sulfate showed that the binding sites of the halistanol sulfate and laminarihexaose are located in the enzyme catalytic site and overlapped.  相似文献   

19.
The transglycosylation potential of the extracellular α-d-galactosidase from the filamentous fungus Talaromyces flavus CCF 2686, chosen as the best enzyme from the screening, was investigated using a series of sterically hindered alcohols (primary, secondary and tertiary) as galactosyl acceptors. Nine alkyl α-d-galactopyranosides derived from the following alcohols – tert-butyl alcohol, 2-methyl-2-butyl alcohol, 2-methyl-1-propyl alcohol, 2,2,2-trifluoroethyl alcohol, 2-propyn-1-ol, n-pentyl alcohol, 3,5-dihydroxybenzyl alcohol, 1-phenylethyl alcohol and 1,4-dithio-dl-threitol – were prepared on a semi-preparative scale. This demonstrates a broad synthetic potential of the T. flavus α-d-galactosidase that has not been observed with another enzyme tested. Moreover, this enzyme exhibits good transglycosylation yields (6–34%). The enzymatic synthesis of tert-butyl α-d-galactopyranoside by transglycosylation was studied in detail.  相似文献   

20.
An efficient total synthesis of 7-O-β-d-glucopyranosyl-4′-O-α-l-rhamnopyranosyl apigenin (1) was developed in only four steps from naringenin. Compared with our previously reported first total synthesis route (six steps and 19.6% overall yield), this new route contained two steps of highly regioselective glycosylation without any selective protection steps. 7,4′-di-O-β-d-glucopyranosyl apigenin (2) was also prepared efficiently by this method. The method is environmentally friendly, economical, and provides a greener method for flavonoid synthesis starting from an inexpensive flavanone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号