共查询到20条相似文献,搜索用时 0 毫秒
1.
Organotin compounds are important contaminants in the environment. They are membrane active molecules with broad biological toxicity. We have studied the interaction of tri-n-butyltin chloride and tri-n-phenyltin chloride with model membranes composed of different phosphatidylethanolamines using differential scanning calorimetry, X-ray diffraction, 31P-nuclear magnetic resonance and infrared spectroscopy. Organotin compounds laterally segregate in phosphatidylethanolamine membranes without affecting the shape and position of the lamellar gel to lamellar liquid-crystalline phase transition thermogram of the phospholipid. This is in contrast with their reported effect on phosphatidylcholine membranes [Chicano et al. (2001) Biochim. Biophys. Acta 1510, 330-341] and emphasises the importance of the nature of the lipid headgroup in determining how the behaviour of lipid molecules is affected by these toxicants. Interestingly, we have found that organotin compounds disrupt the pattern of hydrogen-bonding in the interfacial region of dielaidoylphosphatidylethanolamine membranes and have the ability to promote the formation of hexagonal HII structures in this system. These results open the possibility that some of the specific toxic effects of organotin compounds might be exerted through the alteration of membrane function produced by their interaction with the lipidic component of the membrane. 相似文献
2.
José J Chicano Antonio Ortiz José A Teruel Francisco J Aranda 《Biochimica et biophysica acta》2002,1558(1):70-81
Organotin compounds are important contaminants in the environment. They are membrane active molecules with broad biological toxicity. We have studied the interaction of tri-n-butyltin chloride and tri-n-phenyltin chloride with model membranes composed of different phosphatidylethanolamines using differential scanning calorimetry, X-ray diffraction, 31P-nuclear magnetic resonance and infrared spectroscopy. Organotin compounds laterally segregate in phosphatidylethanolamine membranes without affecting the shape and position of the lamellar gel to lamellar liquid-crystalline phase transition thermogram of the phospholipid. This is in contrast with their reported effect on phosphatidylcholine membranes [Chicano et al. (2001) Biochim. Biophys. Acta 1510, 330-341] and emphasises the importance of the nature of the lipid headgroup in determining how the behaviour of lipid molecules is affected by these toxicants. Interestingly, we have found that organotin compounds disrupt the pattern of hydrogen-bonding in the interfacial region of dielaidoylphosphatidylethanolamine membranes and have the ability to promote the formation of hexagonal H(II) structures in this system. These results open the possibility that some of the specific toxic effects of organotin compounds might be exerted through the alteration of membrane function produced by their interaction with the lipidic component of the membrane. 相似文献
3.
Accelerated formation of cubic phases in phosphatidylethanolamine dispersions. 总被引:1,自引:1,他引:1 下载免费PDF全文
By means of x-ray diffraction we show that several sodium salts and the disaccharides sucrose and trehalose strongly accelerate the formation of cubic phases in phosphatidylethanolamine (PE) dispersions upon temperature cycling through the lamellar liquid crystalline-inverted hexagonal (Lalpha-HII) phase transition. Ethylene glycol does not have such an effect. The degree of acceleration increases with the solute concentration. Such an acceleration has been observed for dielaidoyl PE (DEPE), dihexadecyl PE, and dipalmitoyl PE. It was investigated in detail for DEPE dispersions. For DEPE (10 wt% of lipid) aqueous dispersions at 1 M solute concentration, 10-50 temperature cycles typically result in complete conversion of the Lalpha phase into cubic phase. Most efficient is temperature cycling executed by laser flash T-jumps. In that case the conversion completes within 10-15 cycles. However, the cubic phases produced by laser T-jumps are less ordered in comparison to the rather regular cubic structures produced by linear, uniform temperature cycling at 10 degrees C/min. Temperature cycles at scan rates of 1-3 degrees C/min also induce the rapid formation of cubic phases. All solutes used induce the formation of Im3m (Q229) cubic phase in 10 wt% DEPE dispersions. The initial Im3m phases appearing during the first temperature cycles have larger lattice parameters that relax to smaller values with continuation of the cycling after the disappearance of the Lalpha phase. A cooperative Im3m --> Pn3m transition takes place at approximately 85 degrees C and transforms the Im3m phase into a mixture of coexisting Pn3m (Q224) and Im3m phases. The Im3m/Pn3m lattice parameter ratio is 1. 28, as could be expected from a representation of the Im3m and Pn3m phases with the primitive and diamond infinite periodic minimal surfaces, respectively. At higher DEPE contents ( approximately 30 wt%), cubic phase formation is hindered after 20-30 temperature cycles. The conversion does not go through, but reaches a stage with coexisting Ia3d (Q230) and Lalpha phases. Upon heating, the Ia3d phase cooperatively transforms into a mixture of, presumably, Im3m and Pn3m phases at about the temperature of the Lalpha-HII transition. This transformation is readily reversible with the temperature. The lattice parameters of the DEPE cubic phases are temperature-insensitive in the Lalpha temperature range and decrease with the temperature in the range of the HII phase. 相似文献
4.
Andrea Hickel 《生物化学与生物物理学报:生物膜》2008,1778(10):2325-2333
We have studied the influence of four antimicrobial peptides of different secondary and ternary structure - melittin (Mel), protegrin-1 (PG-1), peptidyl-glycylleucine-carboxyamide (PGLa), and gramicidin S (GS) - on the lamellar-to-nonlamellar transition of palmitoyloleoyl phosphatidylethanolamine (POPE) applying differential scanning calorimetry and small-angle X-ray diffraction. None of the peptides studied led to the formation of an inverted hexagonal phase observed for pure POPE at high temperatures. Instead either cubic or lamellar phases were stabilized to different degrees. GS was most effective in inducing a cubic phase, whereas Mel fully stabilized the lamellar phase. The behavior of POPE in the presence of PG-1 and PGLa was intermediate to GS and Mel. In addition to the known role of membrane elasticity we propose two mechanisms, which cause stabilization of the lamellar phase: electrostatic repulsion and lipid/peptide pore formation. Both mechanisms prevent transmembrane contact required to form either an inverted hexagonal phase or fusion pores, as precursors of the cubic phase. 相似文献
5.
6.
Since phospholipid synthesis is generally confined to one leaflet of a membrane, membrane growth requires phospholipid translocation (flip-flop). It is generally assumed that this process is protein-mediated; however, the mechanism of flip-flop remains elusive. Previously, we have demonstrated flop of 2-[6-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]caproyl] (C6NBD) phospholipids, induced by the presence of membrane-spanning peptides in vesicles composed of an Escherichia coli phospholipid extract, supporting the hypothesis that the presence of transmembrane stretches of proteins in the bilayer is sufficient to allow phospholipid flip-flop in the inner membrane of E. coli [Kol et al. (2001) Biochemistry 40, 10500]. Here, we investigated whether the specific phospholipid composition of E. coli is a prerequisite for transmembrane helix-induced flop of phospholipids. This was tested by determining the amount of C6NBD-phospholipid that was translocated from the inner leaflet to the outer leaflet of a model membrane in time, using a dithionite reduction assay. The transmembrane peptides GWWL(AL)8WWA (WALP23) and GKKL(AL)8KKA (KALP23) induced phospholipid flop in model membranes composed of various lipid mixtures. The rate of peptide-induced flop was found to decrease with increasing dioleoylphosphatidylethanolamine (DOPE) content of vesicles composed of DOPE and dioleoylphosphatidylcholine (DOPC), and the rate of KALP23-induced flop was shown to be stimulated by higher dioleoylphosphatidylglycerol (DOPG) content in model membranes composed of DOPG and DOPC. Furthermore, the incorporation of cholesterol had an inhibitory effect on peptide-induced flop. Finally, flop efficiency was strongly dependent on the phospholipid headgroup of the NBD-phospholipid analogue. Possible implications for transmembrane helix-induced flop in biomembranes in general are discussed. 相似文献
7.
We have investigated the effects of the model alpha-helical transmembrane peptide Ac-K(2)L(24)K(2)-amide (L(24)) on the thermotropic phase behavior of aqueous dispersions of 1,2-dielaidoylphosphatidylethanolamine (DEPE) to understand better the interactions between lipid bilayers and the membrane-spanning segments of integral membrane proteins. We studied in particular the effect of L(24) and three derivatives thereof on the liquid-crystalline lamellar (L(alpha))-reversed hexagonal (H(II)) phase transition of DEPE model membranes by differential scanning calorimetry and (31)P nuclear magnetic resonance spectroscopy. We found that the incorporation of L(24) progressively decreases the temperature, enthalpy, and cooperativity of the L(alpha)-H(II) phase transition, as well as induces the formation of an inverted cubic phase, indicating that this transmembrane peptide promotes the formation of inverted nonlamellar phases, despite the fact that the hydrophobic length of this peptide exceeds the hydrophobic thickness of the host lipid bilayer. These characteristic effects are not altered by truncation of the side chains of the terminal lysine residues or by replacing each of the leucine residues at the end of the polyleucine core of L(24) with a tryptophan residue. Thus, the characteristic effects of these transmembrane peptides on DEPE thermotropic phase behavior are independent of their detailed chemical structure. Importantly, significantly shortening the polyleucine core of L(24) results in a smaller decrease in the L(alpha)-H(II) phase transition temperature of the DEPE matrix into which it is incorporated, and reducing the thickness of the host phosphatidylethanolamine bilayer results in a larger reduction in the L(alpha)-H(II) phase transition temperature. These results are not those predicted by hydrophobic mismatch considerations or reported in previous studies of other transmembrane alpha-helical peptides containing a core of an alternating sequence of leucine and alanine residues. We thus conclude that the hydrophobicity and conformational flexibility of transmembrane peptides can affect their propensity to induce the formation of inverted nonlamellar phases by mechanisms not primarily dependent on lipid-peptide hydrophobic mismatch. 相似文献
8.
Three types of analogues of unsaturated phosphatidylethanolamines (PE) have been prepared: phosphatidyl-omega-amino-1-alkanols, N-alkyl-PE's, and C2-alkyl-PE's, with alkyl substitution of carbon-2 of the ethanolamine head group. The physical properties of dioleoyl, dielaidoyl, and 1-palmitoyl-2-oleoyl phospholipids with these head groups have been examined by calorimetry, 31P NMR, freeze-fracture electron microscopy, and X-ray diffraction. N-Alkylation of PE, or substitution of the ethanolamine moiety by 3-amino-1-propanol or 4-amino-1-butanol, decreases the transition temperature of the hydrated gel phase (Tc) and considerably increases the temperature of the lamellar to hexagonal II transition (TH). The pattern of these effects for various PE analogues suggests that head group size and hydrophobicity as well as hydrogen bonding are important determinants of the phase behavior of these lipids. C2-Alkylated PE analogues exhibit several rather surprising properties, notably the ready formation of a quasi-crystalline "high-melting" solid phase even for di-cis-unsaturated species and substantially lower TH values than are observed for the parent PE species. The behavior of these compounds suggests that "hydration forces" can be more important than considerations of lipid "dynamic shape" in predicting the relative stabilities of lamellar vs. nonlamellar phases for at least some zwitterionic phospholipids. 相似文献
9.
Caveolin‐1 has an atypical membrane‐spanning domain comprising of 34 residues. Caveolin‐1 targets to lipid droplets under certain conditions, where they are involved in signaling and cholesterol balance. In the present study, membrane association of synthetic peptides corresponding to the membrane‐spanning domain of caveolin‐1 has been investigated to obtain an insight into the topology of transmembrane region in the lipid bilayer and the effect of truncations in this sequence, as observed in the targeting to lipid droplets, by using model membranes. Fluorescence studies revealed strong association of the peptide corresponding to the membrane‐spanning domain of caveolin‐1 with anionic lipids as compared with zwitterionic lipids, which is consistent with the location of this domain in the cytoplasmic side of the plasma membrane. Association of a short 9 residue peptide corresponding to the C‐terminus of caveolin‐1 membrane‐spanning domain with lipid vesicles revealed the importance of this region for association with model membranes. Our investigations indicate that the peptide corresponding to the membrane‐spanning domain of caveolin‐1 does not span the lipid bilayer. We propose that both caveolin scaffolding domain and transmembrane segment of caveolin‐1 contribute to the strong association with the plasma membrane rendering the protein highly detergent resistant. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
10.
Cell membranes are phospholipid bilayers with a large number of embedded transmembrane proteins. Some of these proteins, such as scramblases, have properties that facilitate lipid flip-flop from one membrane leaflet to another. Scramblases and similar transmembrane proteins could also affect the translocation of other amphiphilic molecules, including cell-penetrating or antimicrobial peptides. We studied the effect of transmembrane proteins on the translocation of amphiphilic peptides through the membrane. Using two very different models, we consistently demonstrate that transmembrane proteins with a hydrophilic patch enhance the translocation of amphiphilic peptides by stabilizing the peptide in the membrane. Moreover, there is an optimum amphiphilicity because the peptide could become overstabilized in the transmembrane state, in which the peptide-protein dissociation is hampered, limiting the peptide translocation. The presence of scramblases and other proteins with similar properties could be exploited for more efficient transport into cells. The described principles could also be utilized in the design of a drug-delivery system by the addition of a translocation-enhancing peptide that would integrate into the membrane. 相似文献
11.
Aqueous dispersions of egg phosphatidylethanolamine/18 : 1c, 18 : 1c-phosphatidylcholine/cholesterol/18 : 1c, 18 : 1c-phosphatidic acid (50 : 16 : 30 : 4) undergo a temperature-dependent transition from extended bilayers to structures characterized by isotropic 31P-NMR signals and visualized by freeze-fracturing as lipidic particles associated with the bilayer. This transition is accompanied by a 3-fold increase in the phosphatidylcholine pool which can be exchanged by phospholipid exchange protein demonstrating a direct relation between the occurrence of non-bilayer lipid structures and an increased transbilayer movement of phosphatidylcholine. 相似文献
12.
13.
Rowat AC Brask J Sparrman T Jensen KJ Lindblom G Ipsen JH 《European biophysics journal : EBJ》2004,33(4):300-309
Protein prenylation plays an important role in signal transduction, protein-protein interactions, and the localization and association of proteins with membranes. Using three different techniques, this study physically characterizes the interactions between model dimyristoylphosphatidylcholine membranes and a series of farnesylated peptides. Magic angle spinning nuclear Overhauser enhancement spectroscopy and differential scanning calorimetry reveal that both charged [Ac-Asn-Lys-Asn-Cys-(farnesyl)-OMe and Ac-Asn-Lys-Asn-Cys-(farnesyl)-NH(2)] and uncharged [Ac-Cys-(farnesyl)-OMe and farnesol] species partition into dimyristoylphosphatidylcholine bilayers. Calorimetry and vesicle fluctuation analysis of giant unilamellar vesicles show that the charged peptides modestly decrease the main gel-fluid phase transition and markedly increase the bending rigidity of large unilamellar vesicles. Uncharged species, on the other hand, dramatically decrease the main phase transition and modestly decrease the bending rigidity. No difference with carboxyl methylation is detected. 相似文献
14.
《Molecular cell》2022,82(19):3677-3692.e11
15.
Transmembrane peptides stabilize inverted cubic phases in a biphasic length-dependent manner: implications for protein-induced membrane fusion 下载免费PDF全文
Siegel DP Cherezov V Greathouse DV Koeppe RE Killian JA Caffrey M 《Biophysical journal》2006,90(1):200-211
WALP peptides consist of repeating alanine-leucine sequences of different lengths, flanked with tryptophan "anchors" at each end. They form membrane-spanning alpha-helices in lipid membranes, and mimic protein transmembrane domains. WALP peptides of increasing length, from 19 to 31 amino acids, were incorporated into N-monomethylated dioleoylphosphatidylethanolamine (DOPE-Me) at concentrations up to 0.5 mol % peptide. When pure DOPE-Me is heated slowly, the lamellar liquid crystalline (L(alpha)) phase first forms an inverted cubic (Q(II)) phase, and the inverted hexagonal (H(II)) phase at higher temperatures. Using time-resolved x-ray diffraction and slow temperature scans (1.5 degrees C/h), WALP peptides were shown to decrease the temperatures of Q(II) and H(II) phase formation (T(Q) and T(H), respectively) as a function of peptide concentration. The shortest and longest peptides reduced T(Q) the most, whereas intermediate lengths had weaker effects. These findings are relevant to membrane fusion because the first step in the L(alpha)/Q(II) phase transition is believed to be the formation of fusion pores between pure lipid membranes. These results imply that physiologically relevant concentrations of these peptides could increase the susceptibility of biomembrane lipids to fusion through an effect on lipid phase behavior, and may explain one role of the membrane-spanning domains in the proteins that mediate membrane fusion. 相似文献
16.
We have hypothesized that modulating the free energy of hydrophobic mismatch (HM) might be a principal means to control the fusion process and that it may be a role of cholesterol to counteract HM and make membranes fusogenic. To test these hypotheses, we examined the ability of cholesterol 1-pyrenebutyrate (PY-Ch) and other pyrene-containing fluorescent probes to report interstices formed during the L(alpha)-H(II) transition of DiPoPE in terms of changes in excimer/monomer (E/M) fluorescence ratios. We found a significant (>150%) increase in the PY-Ch E/M in the hexagonal phase relative to the lamellar phase, presumably resulting from redistribution of PY-Ch from the curved lamellar leaflets to coexisting HMs that constitute 20 vol % of this phase. All other probes showed a much smaller or even an opposite (PY-hexadecanoic acid) effect. The time course of the PY-Ch E/M ratio during fusion of DOPC/PE/Ch small unilamellar vesicles showed a transient increase with a subsequent decrease, consistent with fusion proceeding through intermediates with significant HM. The amplitude and position of the maximum in E/M correlated with the rate of contents mixing. An increase in E/M was not seen when lipid mixing occurred in the absence of contents mixing. Our results suggest that PY-Ch provides a tool for monitoring fusion intermediates that occur after the initial fusion intermediate but prior to pore formation, possibly by accumulating in regions associated with HM. 相似文献
17.
The biological activity of farnesol (FN) and geranylgeraniol (GG) and their isoprenyl groups is related to membrane-associated processes. We have studied the interactions of FN and GG with 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) membranes using DSC and X-ray diffraction. Storage of samples at low temperature for a long time favors a multidomain system formed by a lamellar crystalline (Lc) phase and isoprenoids (ISPs) aggregates. We demonstrate that ISPs alter the thermotropic behavior of DEPE, thereby promoting a HII growth in a lamellar Lc phase with a reduced degree of hydration. The HII phase occurs with the same repeat distance (dHII=5.4 nm) as the Lc phase and upon heating it expands considerably (δd/δT≈0.22 nm/°C). The dimensional stabilization of this HII phase coincides with the transition temperature of the Lc to Lα phase. Thereafter, the system DEPE/ISP will progress by increasing the nonlamellar-forming propensity and reaching a single HII phase at high temperature. The cooling scan followed a similar structural path, except that the system went into a stable gel phase Lβ with a repeat distance, dLβ=6.5 nm, in co-existence with a HII phase. The formation of ISP microdomains in model PE membranes substantiates the importance of the isoprenyl group in the binding of isoprenylated proteins to membranes and in lipid–lipid interactions through modulation of the membrane structure. 相似文献
18.
The biological activity of farnesol (FN) and geranylgeraniol (GG) and their isoprenyl groups is related to membrane-associated processes. We have studied the interactions of FN and GG with 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine (DEPE) membranes using DSC and X-ray diffraction. Storage of samples at low temperature for a long time favors a multidomain system formed by a lamellar crystalline (Lc) phase and isoprenoids (ISPs) aggregates. We demonstrate that ISPs alter the thermotropic behavior of DEPE, thereby promoting a HII growth in a lamellar Lc phase with a reduced degree of hydration. The HII phase occurs with the same repeat distance (dHII=5.4 nm) as the Lc phase and upon heating it expands considerably (deltad/deltaT approximately 0.22 nm/ degrees C). The dimensional stabilization of this HII phase coincides with the transition temperature of the Lc to Lalpha phase. Thereafter, the system DEPE/ISP will progress by increasing the nonlamellar-forming propensity and reaching a single HII phase at high temperature. The cooling scan followed a similar structural path, except that the system went into a stable gel phase Lbeta with a repeat distance, dLbeta=6.5 nm, in co-existence with a HII phase. The formation of ISP microdomains in model PE membranes substantiates the importance of the isoprenyl group in the binding of isoprenylated proteins to membranes and in lipid-lipid interactions through modulation of the membrane structure. 相似文献
19.
Lamazière A Chassaing G Trugnan G Ayala-Sanmartin J 《Journal de la Société de Biologie》2006,200(3):229-233
Peptide-membrane interaction is the first step required for peptide cell internalization. In this paper we studied the interactions of substance P, Penetratin and an amphiphilic 16mer (RL16) peptide in two different model membranes, giant unilamellar vesicles and large unilamellar vesicles. Penetratin was able to induce the formation of tubes inside the giant vesicles without changes in membrane permeability. On the contrary, RL16 induced the disruption of giant vesicles and the permeabilization of large vesicles. Substance P showed none of these effects. 相似文献
20.
Silva JR Mury FB Oliveira MF Oliveira PL Silva CP Dansa-Petretski M 《Insect biochemistry and molecular biology》2007,37(6):523-531
Rhodnius prolixus is a hematophagous insect that ingests large quantities of blood in each blood-feeding session. This ingested blood provides important nutrients to sustain the insect's oogenesis and metabolic pathways. During the digestive process, however, huge amounts of heme are generated as a consequence of the hemoglobin breakdown. Heme is an extremely dangerous molecule, since it can generate reactive oxygen species in the presence of oxygen that impair the normal metabolism of the insect. Part of the hemoglobin-derived heme can associate with the perimicrovillar membranes (PMM) in the gut lumen of R. prolixus; in this study we demonstrate the participation of the PMM in a heme detoxification process. These membranes were able to successfully induce heme aggregation into hemozoin (Hz). Heme aggregation was not dependent on the erythrocyte membranes, since the contribution of these membranes to the process was negligible, demonstrating that the ability to induce heme aggregation is a feature of the PMM, possibly representing a pre-adaptation of the hemipterans to feeding on blood. 相似文献