首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
During fusion of the mammalian secondary palate, it has been suggested that palatal medial edge epithelial (MEE) cells disappear by means of apoptosis, epithelial-mesenchymal transformation (EMT) and epithelial cell migration. However, it is widely believed that MEE cells never differentiate unless palatal shelves make contact and the midline epithelial seam is formed. In order to clarify the potential of MEE cells to differentiate, we cultured single (unpaired) palatal shelves of ICR mouse fetuses by using suspension and static culture methods with two kinds of gas-mixtures. We thereby found that MEE cells can disappear throughout the medial edge even without contact and adhesion to the opposing MEE in suspension culture with 95% O2/5% CO2. Careful examination of MEE cell behavior in the culture revealed that apoptosis, EMT, and epithelial cell migration all occurred at various stages of MEE cell disappearance, including the transient formation and disappearance of epithelial triangles and islets. In contrast, MEE cells showed poor differentiation in static culture in a CO2 incubator. Furthermore, mouse and human amniotic fluids were found to prevent MEE cell differentiation in the cultured single palatal shelf, although paired palatal shelves fused successfully even in the presence of amniotic fluid. We therefore conclude that terminal differentiation of MEE cells is not necessarily dependent on palatal shelf contact and midline epithelial seam formation, but such MEE cell differentiation appears to be prevented in utero by amniotic fluid unless palatal shelves make close contact and the midline epithelial seam is formed.  相似文献   

2.
3.
The fate of the medial edge epithelial (MEE) cells during palatal fusion has been proposed to be either programmed cell death or epithelial-mesenchymal transformation. Vital cell labeling techniques were used to mark the MEE and observe their fate during palatal fusion in vitro. Fetal mouse palatal shelves were labeled with Dil and allowed to proceed through fusion while maintained in an organ culture system. The tissues were examined at several stages of palatal fusion for the distribution of Dil, presence of specific antigens and ultrastructural appearance of the cells. The MEE labeled with Dil occupied a midline position at all stages of palatal fusion. Initially the cells had keratin intermediate filaments and were separated from the underlying mesenchyme by an intact basement membrane. During the process of fusion the basement membrane was degraded and the Dil-labeled MEE were in contact with the mesenchymal-derived extracellular matrix. In the late stages of fusion the Dil-labeled MEE altered their cellular morphology, had vimentin intermediate filaments, and were not associated with an identifiable basement membrane. Dil-labeled cells, without an epithelial phenotype, remained present in the midline of the completely fused palate. The data indicate that the MEE did not die but underwent a phenotypic transformation to viable mesenchymal cell types, which were retained in the palatal mesenchyme.  相似文献   

4.
Cleft palate results from a mixture of genetic and environmental factors and occurs when the bilateral palatal shelves fail to fuse. The objective of this study was to search for new genes involved in mouse palate formation. Gene expression of murine embryonic palatal tissue was analyzed at various developmental stages before, during, and after palate fusion using GeneChip® microarrays. Ceacam1 was one of the highly up-regulated genes during palate formation, and this was confirmed by quantitative real-time PCR. Immunohistochemical staining showed that CEACAM1 was present in prefusion palatal epithelium and was degraded during fusion. To investigate the developmental role of CEACAM1, function-blocking antibody was added to embryonic mouse palate in organ culture. Palatal fusion was inhibited by this function-blocking antibody. To investigate the subsequent developmental role of CEACAM1, we characterized Ceacam1-deficient (Ceacam1 −/−) mice. Epithelial cells persisted abnormally at the midline of the embryonic palate even on day E16.0, and palatal fusion was delayed in Ceacam1 −/− mice. TGFβ3 expression, apoptosis, and cell proliferation in palatal epithelium were not affected in the palate of Ceacam1−/−mice. However, CEACAM1 expression was retained in the remaining MEE of TGFβ-deficient mice. These results suggest that CEACAM1 has roles in the initiation of palatal fusion via epithelial cell adhesion.  相似文献   

5.
Transforming growth factor-β (TGFβ) is a dimeric peptide growth factor which regulates cellular differentiation and proliferation during development. Most cells secrete TGFβ as a large latent TGFβ complex containing mature TGFβ, latency associated peptide, and latent TGFβ-binding protein (LTBP)-1. The biological role of LTBP-1 in development remains unclear. Using a polyclonal antiserum specific for LTBP-1 (Ab39) and three-dimensional collagen gel culture assay of embryonic heart, we examined the tissue distribution of LTBP-1 and its functional role during the formation of endocardial cushion tissue in the mouse embryonic heart. Mature TGFβ protein was required at the onset of the endothelial-mesenchymal transformation to initiate endocardial cushion tissue formation. Double antibody staining showed that LTBP-1 colocalized with TGFβ1 as an extracellular fibrillar structure surrounding the endocardial cushion mesenchymal cells. Immunogold electronmicroscopy showed that LTBP-1 localized to 40–100 nm extracellular fibrillar structure and 5–10-nm microfibrils. The anti–LTBP-1 antiserum (Ab39) inhibited the endothelial-mesenchymal transformation in atrio-ventricular endocardial cells cocultured with associated myocardium on a three-dimensional collagen gel lattice. This inhibitory effect was reversed by administration of mature TGFβ proteins in culture. These results suggest that LTBP-1 exists as an extracellular fibrillar structure and plays a role in the storage of TGFβ as a large latent TGFβ complex.  相似文献   

6.
During normal murine palatogenesis, regional specific differentiation of the epithelium results in three cell phenotypes: nasal (ciliated pseudostratified columnar cells), oral (stratified squamous cells) and medial edge (migratory, epithelio-mesenchymally transformed cells). We have developed a defined, serum-free, culture system which supports the growth and differentiation of isolated murine embryonic palatal epithelia in vitro. Using immunofluorescence microscopy, an established panel of antibodies was used to characterise the cytokeratin intermediate filament profile of palatal epithelial sheets at a precise developmental stage, following culture in serum-free medium with and without either transforming growth factor alpha (TGF alpha) or 10% donor calf serum (DCS). The morphologically discernable oral, medial edge and nasal phenotypes exhibited distinctive cytokeratin profiles, which remained consistent for all culture conditions, and which correlated with the known differentiation states of the epithelial types. The oral epithelia stained positively for cytokeratin 19 and cytokeratins characteristic of multilayered epithelia (1, 5, 14). Nasal epithelia stained similarly but in addition expressed the simple-epithelial cytokeratin pair, 8 and 18. Medial edge epithelia also expressed cytokeratins 1, 5 and 14 but with the exception of a few isolated cells there was no staining for cytokeratins 8 and 18. Cytokeratin 19 was absent specifically from the medial edge epithelial cells: this result may be related to the loss of cytokeratin expression observed during epithelial-mesenchymal transformations. By exhibiting a complexity of expression linked to differentiation state and independent of culture conditions, cytokeratins constitute useful markers of palatal epithelial differentiation in vitro as well as in vivo.  相似文献   

7.
In vivo, normal tissues and organs have a three-dimensional structure and function in a three-dimensional environment. The standard two-dimensional cell culture conditions drastically differ from those in vivo. For this reason, three-dimensional cultures based on different variants of the extracellular matrix are more adequate for analyzing normal and tumor cell growth. Culturing a poorly differentiated hepatocellular carcinoma in a collagen gel yielded spheroids whose growth pattern shifted towards the epithelial phenotype. The shift was expressed in changes in the cytoskeleton, enhanced formation of extracellular matrix fibrils between cells, and formation of fibronectin fibrils on the outer surface of spheroids. Analysis of 25 genes reflecting the level of morphological and functional hepatocyte differentiation showed that the expression of the gene encoding the transforming growth factor TGFβ2 was suppressed the most significantly.  相似文献   

8.
Mouse embryonic palatal mesenchymal (MEPM) cells were cultured either on plastic tissue culture dishes or on the surface of three-dimensional collagen gels or within collagen gel matrices in DMEM/F12 medium containing 2.5% donor calf serum. MEPM cells proliferated exponentially when cultured on collagen or on plastic. Cells cultured within collagen gels did not proliferate but remained viable. Addition of 10 ng/ml epidermal growth factor (EGF) or transforming growth factor alpha (TGF) stimulated the proliferation of those cells cultured on plastic or on collagen but not those cultured within collagen gels. Immunocytochemical analysis revealed that MEPM cells synthesise collagen types I, III, IV, V, VI and IX; fibronectin, heparan sulphate proteoglycan, laminin and tenascin in vitro. These molecules are all present in the developing palate in vivo. EGF and TGF produced a generalised stimulation of extracellular matrix (ECM) synthesis by MEPM cells in vitro. Biochemical analysis indicated that cells cultured within collagen gels had the highest intrinsic rate of protein synthesis. On all substrata neither EGF nor TGF markedly altered the types of ECM molecules synthesised but rather caused a general increase in the total amount produced. This stimulation was most marked where the cells were cultured within collagen gels. The lack of stimulation of proliferation of MEPM cells cultured within collagen gels (i.e. in a physiologically-relevant environment) by EGF or TGF together with the marked stimulation of ECM synthesis suggests that these factors may act as differentiation signals via their effects on ECM production. Correspondence to: M.J. Dixon  相似文献   

9.
A serum-free, hormonally defined medium was developed which supports growth and differentiation in primary culture of epithelial cells from prefusion embryonic mouse palatal shelves. Using this culture system, medial epithelial programmed cell death was investigated. In the absence of EGF, medial epithelial cells undergo cell death and detach from the substratum by 24 hr of culture. The addition of EGF alone or in combination with various agents which increase intracellular cyclic AMP levels prevented medial epithelial cell death in both cell and organ culture. EGF appeared to exert its most dramatic effect in cell culture on growth and differentiation of the squamous oral epithelial cells. In addition, EGF and agents such as 8-bromo-cyclic AMP, dibutyryl cyclic AMP, or cholera toxin synergistically stimulated the appearance of a long-lived, rapidly proliferating cell type by Day 4 of culture. Our results suggest that both EGF and cyclic AMP together may be important in regulating proliferation of embryonic palatal epithelial cells.  相似文献   

10.
The expression of some members of the transforming growth factor beta (TGF beta) family of genes in embryonic craniofacial tissue suggests a functional role for these molecules in orofacial development. In an attempt to ascertain a role for the TGF beta s during palatal ontogeny, murine palatal shelves were excised on gestation day (GD) 12, prior to overt epithelial differentiation, grown in organ culture under serum-free conditions and exposed to TGF beta 1 and TGF beta 2 for 18 or 42 h. Shelves were labeled with [3H]-thymidine (20 microCi/ml) during the last 4 h in culture, fixed, dehydrated, embedded in paraffin and sections stained and examined by autoradiography. Treatment of GD12 palates with TGF beta 1 and TGF beta 2 resulted in precocious cessation of medial edge epithelium (MEE) DNA synthesis followed by elimination of the MEE. In addition, this response appeared to be dose-related with higher concentrations of growth factor eliciting a more marked biological response. TGF beta treatment of homologous shelves grown in apposition also resulted in precocious fusion of apposing MEE. Thus, members of the TGF beta family, known to be synthesized by palatal MEE, appear to act in an autocrine/paracrine fashion in this tissue and are capable of regulating differentiation of embryonic palatal medial edge epithelium.  相似文献   

11.
Summary Sustained growth of mouse ventral and anterior prostatic epithelial cells embedded within collagen gel matrix was achieved in a serum-free medium composed of Dulbecco's modified Eagle's medium and Ham's F12 medium, 1∶1 (vol/vol), supplemented with bovine serum albumin fraction V, epidermal growth factor, transferrin, cholera toxin, prolactin, 5α-dihydrotestosterone, cortisol, putrescine, fibroblast growth factor, and a trace element mixture. Three-dimensional growth of prostatic epithelial cells occurred inside the collagen gel matrix. This serum-free medium allowed cell growth greater than sevenfold over 10 d in culture. Tissue recombination and cell culture techniques were integrated to demonstrate that cultured cells retained prostatic characteristics. Following 10 d of culture, epithelial colonies from mouse ventral and anterior prostatic epithelial cell cultures were isolated and combined with rat fetal urogenital sinus mesenchyme and grown for 4 wk under the renal capsule of intact athymic male mice. These tissue recombinants showed distinctive prostatic histologic characteristic (alveoli and ducts lined with cuboidal or columnar epithelium surrounded by stroma). When histologic sections of recombinants were stained with the Hoechst 33258, epithelial cells of mouse origin were distinguishable from stromal cells of rat origin. Aided by grants CA-05388 and CA-09041 from the National Institutes of Health, Bethesda, MD, and by M. A. R. C. fellowship GM08730 to T. T.  相似文献   

12.
The fate of the palatal medial edge epithelial (MEE) cells undergoes programming cell death, migration, and epithelial-mesenchymal transdifferentiation (EMT) coincident with the process of palatal fusion and disappearance of MEE. Mesenchymal cells in the palate have both cranial neural crest (CNC) and non-CNC origins. The objectives of this study were to identify the populations of palatal mesenchymal cells using β-galactosidase (β-gal) and DiI cell lineage markers, and to determine whether MEE-derived cells continued to express transforming growth factor-β3 (TGF-β3) and transforming growth factor-β type III receptor (TβR-III), which were specific for MEE. A model has been developed using Wnt1 tissue specific expression of Cre-recombinase to activate β-gal solely in the CNC. The expressions of TGF-β3 and TβR-III in MEE were temporally correlated with critical events in palatogenesis. Three cell populations could be distinguished in the palatal mesenchymal CNC-derived, non-CNC derived and MEE-derived. After fusion, β-gal (−) and DiI (+) mesenchymal cells continued to express TGF-β3, however TβR-III was expressed only in the epithelial MEE, as well as keratin expression. In addition, we performed laser capture microdissection to identify mRNA expression of isolated DiI (+) MEE cells. Both epithelial and transdifferentiated MEE have expressed TGF-β3, however, TβR-III was only expressed in epithelium. Extracellular matrix, especially MMP13 has been expressed coincident with fused stage which can be strongly associated with TGF-β3. These results demonstrate that combining a heritable marker and a cell lineage dye can distinguish different populations of mesenchymal cells in the developing palate. Furthermore, TGF-β3 and MMP13 could be strongly associated with EMT in palatogenesis.  相似文献   

13.
Cleft lip and palate syndromes are among the most common congenital malformations in humans. Mammalian palatogenesis is a complex process involving highly regulated interactions between epithelial and mesenchymal cells of the palate to permit correct positioning of the palatal shelves, the remodeling of the extracellular matrix (ECM), and subsequent fusion of the palatal shelves. Here we show that several matrix metalloproteinases (MMPs), including a cell membrane-associated MMP (MT1-MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) were highly expressed by the medial edge epithelium (MEE). MMP-13 was expressed both in MEE and in adjacent mesenchyme, whereas gelatinase A (MMP-2) was expressed by mesenchymal cells neighboring the MEE. Transforming growth factor (TGF)-beta3-deficient mice, which suffer from clefting of the secondary palate, showed complete absence of TIMP-2 in the midline and expressed significantly lower levels of MMP-13 and slightly reduced levels of MMP-2. In concordance with these findings, MMP-13 expression was strongly induced by TGF-beta3 in palatal fibroblasts. Finally, palatal shelves from prefusion wild-type mouse embryos cultured in the presence of a synthetic inhibitor of MMPs or excess of TIMP-2 failed to fuse and MEE cells did not transdifferentiate, phenocopying the defect of the TGF-beta3-deficient mice. Our observations indicate for the first time that the proteolytic degradation of the ECM by MMPs is a necessary step for palatal fusion.  相似文献   

14.
Summary The distribution of acidic and basic fibroblast growth factors (aFGF, bFGF) was mapped during mouse embryonic palate development. Generally, they localised most intensely in the basement membrane and epithelia rather than the mesenchyme. Localisation was predominantly restricted to the palatal nasal, and medial edge epithelia. Staining was particularly intense in the medial edge epithelia at the time of mid-line epithelial seam formation. Intense staining persisted in the epithelia of the degenerating seam and later in the oral and nasal epithelial triangles. Mouse embryonic palate mesenchyme (MEPM) cells cultured in vitro on a variety of substrata (on plastic, on the surface of a collagen gel and within a collagen gel) responded to treatment with aFGF or bFGF. These responses were modulated by the culture substratum. The FGFs stimulated MEPM cell proliferation on plastic and on collagen, but inhibited cell growth in collagen. The FGFs had little effect on protein production when cells were cultured on plastic, but caused a large reduction in on-collagen and incollagen cultures. This reduction was greater in collagenous than non-collagenous proteins. Generally, treatment with FGFs stimulated the production of glycosaminoglycans (GAGs), particularly hyaluronan (HA) and dermatan sulphate (DS). In addition, the size class of HA was shifted to a higher molecular weight form. These data indicate that aFGF and bFGF may play a role in modulating mesenchymal cell matrix biosynthesis, so facilitating palatal epithelial seam degeneration. Correspondence to: M.W.J. Ferguson  相似文献   

15.
Transforming growth factor-beta3 (TGF-beta3) plays a critical role during palate development, since mutations of the TGF-beta3 gene give rise to cleft palate in both humans and mice. Striking alterations have been reported in the behaviour and differentiation of medial edge epithelial (MEE) cells in TGF-beta3 knockout mouse palates. In the present paper, we provide evidence of alterations in MEE intercellular adhesion in TGF-beta3 -/- mouse palates using immunohistochemistry with monoclonal antibodies to a panel of cell adhesion and cytoskeletal molecules including E-cadherin, alpha and beta catenin, beta actin, vinculin and beta2 integrin. In vitro labeling of opposing MEE with two different lipophilic markers and subsequent analysis by confocal microscopy revealed that wild type MEE cells intercalate as soon as the midline epithelial seam forms. This finding indicates that the palate may elongate in a dorso-ventral direction by means of convergent extension, as occurs in other embryonic developmental processes. In contrast, this intercalation does not occur in the TGF-beta3 -/- MEE but it can be rescued by the exogenous addition of TGF-beta3. Thus, the substantial alteration of MEE intercellular adhesion observed in TGF-beta3 -/- palates may account for the defect in palatal shelf adhesion and the formation of cleft palate.  相似文献   

16.
Phenotype transformation of corneal keratocyte to myofibroblast plays an important role in the wound healing process of cornea and TGFβ is considered to be the most important mediator to induce myofibroblast trans-differentiation. Peroxisome proliferator-activated receptors-γ (PPAR-γ) activation has been proved to exert anti-fibrotic effect in many tissues. In this study, we investigated the effect of PPAR-γ agonist, pioglitazone, on myofibroblast transformation, extracellular matrix production and cell proliferation. The results showed pioglitazone inhibited the TGFβ-driven myofibroblast differentiation, as determined by F-actin fluorescence staining, α-smooth muscle actin-specific immunocytochemistry and western blot analysis. Pioglitazone also potently attenuated TGFβ induced type I collagen and fibronectin mRNA and protein production. Moreover, pioglitazone showed inhibitory effect on TGFβ induced cell proliferation. The irreversible PPAR-γ antagonist GW9662, partially reversed the inhibition of collagen I and fibronectin expression but not myofibroblast transformation, suggesting both PPAR-γ dependent and PPAR-γ independent mechanisms were involved in the action of pioglitazone. Therefore, our study indicates pioglitazone has a potential application in therapy of corneal fibrosis and PPAR-γ might be a promising therapy target.  相似文献   

17.
Summary Several extracellular matrix components (procollagen type III, fibronectin, collagen type IV, laminin and nidogen) and microfilament constituents (actin, α-actinin and vinculin) were localized by indirect immunofluorescence microscopy in frozen sections of embryonic mouse molars. Nidogen was present at the epithelio-mesenchymal junction during polarization and initial steps of functional differentiation of odontoblasts. Nidogen disappeared at a stage where direct contacts between preameloblasts and predentin were required to allow the initiation of ameloblast polarization. Our observations concerning the distribution of procollagen type III and fibronectin during odontoblast differentiation add to current knowledge. Procollagen type III and fibronectin surrounding preodontoblasts accumulated at the apical part of polarizing and functional odontoblasts secreting “initial” predentin. Procollagen type III, but not fibronectin, disappeared in front of functional odontoblasts synthesizing “late” predentin and dentin. Fibronectin, present in “initial” predentin, was no longer detected in “late” predentin and dentin but was found between odontoblasts secreting “late” predentin and dentin. Actin, α-actinin and vinculin were concentrated in the peripheral cytoplasm of preameloblasts and accumulated at the apical and basal poles of functional ameloblasts. During differentiation of odontoblasts, the three proteins accumulated at the apical pole of these cells. Time and space correlations between matrix and microfilament modifications during odontoblast and ameloblast differentiation are documented. The possibility is discussed that there is transmembranous control of the cytoskeletal activities of odontoblasts and ameloblasts by the extracellular matrix.  相似文献   

18.
Abstract Although palatal shelf adhesion is a crucial event during palate development, little work has been carried out to determine which molecules are responsible for this process. Furthermore, whether altered palatal shelf adhesion causes the cleft palate presented by Tgf -β3 null mutant mice has not yet been clarified. Here, we study the presence/distribution of some extracellular matrix and cell adhesion molecules at the time of the contact of palatal shelves in both wild-type and Tgf -β3 null mutant palates of two strains of mice (C57/BL/6J (C57), and MF1) that develop cleft palates of different severity. We have performed immunohistochemistry with antibodies against collagens IV and IX, laminin, fibronectin, the α5- and β1-integrins, and ICAM-1; in situ hybridization with a Nectin-1 riboprobe; and palatal shelf cultures treated or untreated with TGF-β3 or neutralizing antibodies against fibronectin or the α5-integrin. Our results show the location of these molecules in the wild-type mouse medial edge epithelium (MEE) of both strains at the time of the contact of palatal shelves; the heavier (C57) and milder (MF1) alteration of their presence in the Tgf -β3 null mutants; the importance of TGF-β3 to restore their normal pattern of expression; and the crucial role of fibronectin and the α5-integrin in palatal shelf adhesion. We thus provide insight into the molecular bases of this important process and the cleft palate presented by Tgf -β3 null mutant mice.  相似文献   

19.
Cells from the cysts of patients with autosomal dominant polycystic kidney disease (PKD) were grown in vitro under standard conditions without the aid of collagen-pretreated surfaces, and both the synthesis and composition of the extracellular matrix were investigated. At confluence, PKD cells presented the typical features of epithelial cells, but showed a different collagen composition from fibroblasts. Compared with normal tubular epithelia (NTE), PKD monolayers produced an excess of extracellular matrix, which accounted for 30% of the total incorporation of [3H] proline, although this value was considerably lower (by a factor of 10) in the case of NTE. Immunohistochemical and electrophoretic techniques revealed a complex collagen composition in the extracellular matrix which included [α(III)]3 and collagen IV. However, part of the collagen components remained unidentified in spite of the fact that they exhibited a typical Mr of α1(I) and α2(I) in the presence of urea. Immunoprecipitation with monospecific antibodies and Northern blotting with specific probes failed to recognize α1(I) and α2(I), but demonstrated their presence in fibroblasts. Purification and cyanogen bromide digestion demonstrated a strong interhomology in fingerprint peptide composition among the uncharacterized collagens synthesized by PKD cells, thus suggesting a common identity. These observations document a markedly augmented production of extracellular matrix by PKD cultured cells in vitro, and show the presence of collagens which do not share homologies with the major collagen molecules. A better characterization of extracellular matrix composition is central to any comprehension of the cystogenetic mechanisms in vivo.  相似文献   

20.

Introduction  

Transforming growth factor beta (TGFβ) plays a central role in morphogenesis, growth, and cell differentiation. This cytokine is particularly important in cartilage where it regulates cell proliferation and extracellular matrix synthesis. While the action of TGFβ on chondrocyte metabolism has been extensively catalogued, the modulation of specific genes that function as mediators of TGFβ signalling is poorly defined. In the current study, elements of the Smad component of the TGFβ intracellular signalling system and TGFβ receptors were characterised in human chondrocytes upon TGFβ1 treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号