首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cell walls of the yeast and mycelial forms of Yarrowia lipolytica were isolated and purified. Electron microscopy studies showed no differences between both types of cell walls. Chemical analysis revealed that the yeast cell wall contained 70% neutral carbohydrate, 7% amino sugars, 15% protein, 5% lipids and 0.8% phosphorus. Mycelial cell walls contained 70% carbohydrate, 14% aminosugars, 6% protein, 5% lipids and 0.6% phosphorus. Three polysaccharides: -glucan, mannan and chitin were detected. Proteins were solubilized from both cell wall fractions and separated by polyacrylamide gel electrophoresis. About 50 protein bands were detected, four of them corresponding to glycoproteins. The cell walls of the yeast and mycelial forms of Y. lipolytica were qualitatively similar and only quantitative differences were found.Abbreviations GlcNAc N-acetylglucosamine - FITC-WGA fluorescein isothiocyanate-wheat germ agglutinin - PAS periodic acid Schiff  相似文献   

2.
Summary Cells ofSaccharomycopsis guttulata were ruptured by sonic oscillation and the resulting cell walls were purified by washing and centrifugation. The walls contained 43.7% carbohydrate (expressed as glucose), 39.6% protein and a trace of chitin. Paper chromatography of hydrolyzed cell walls showed that glucose and an unknown reducing compound make up the bulk of the carbohydrate fraction. Mannose and glucosamine were present in small amounts. The cell wall composition ofS. guttulata appears to differ considerably from that ofS. cerevisiae.  相似文献   

3.
The preparation and chemical poperties of the cell walls of Leptospira biflexa Urawa and Treponema pallidum Reiter are described. Both cell walls are composed mainly of polysaccharides and peptidoglycans. The data of chemical analysis indicate that the cell wall of L. biflexa Urawa contains rhamnose, arabinose, xylose, mannose, galactose, glucose and unidentified sugars as neutral sugars, and alanine, glutamic acid, α,ε-diaminopimelic acid, glucosamine and muramic acid as major amino acids and amino sugars. As major chemical constituents of the cell wall of T. pallidum Reiter, rhamnose, arabinose, xylose, mannose, galactose, glucose, alanine, glutamic acid, ornithine, glycine, glucosamine and muramic acid have been detected. The chemical properties of protein and polysaccharide fractions prepared from the cells of T. pallidum Reiter were also partially examined.  相似文献   

4.
The carbohydrate composition of the cell walls of Paecilomyces persicinus P-10 M1 was monitored daily for 6 days to detect any changes during growth and cephalosporin C production. Walls were isolated after mechanical breakage, sonication, and exposure to detergent. Major quantitative changes in cell wall carbohydrate composition accompanied a decrease in both cell weight and antibiotic production. Glucosamine content remained relatively constant in the 24- to 96-h cell walls and increased markedly in the 120- and 144-h preparations. The non-nitrogenous carbohydrate cell wall component, however, decreased significantly in the 48- and 120-h cell walls. Gas-liquid chromatographic analysis of the non-nitrogenous carbohydrate cell well fraction revealed the presence of glucose, the major component, mannose, galactose, and minute quantities of arabinose. Except for glucose, which was found to decrease moderately in the 120- and 144-h cell walls, the neutral sugars did not vary significantly with time.  相似文献   

5.
Carbohydrate composition was determined in isolated cell walls of meiospores of Allomyces arbuscula after incubation for 15 min (encysted meiospores: cysts), 150 min (germlings: cysts + rhizoids) and 24 h (cysts + rhizoids + hyphae). The principal constituent in all cell wall samples is chitin, accounting for about 75% of the recovered carbohydrates. In addition, cell walls of all stages examined contain polysaccharides which release galactose, glucose, mannose, arabinose, xylose, fucose, and rhamnose on acid hydrolysis. While different developmental stages show minor quantitative changes in chitin, the ratio of galactose to glucose decreases sharply during differentiation of ungerminated cysts into germlings with rhizoids and hyphae. The increase in glucose is accompanied by a decrease in the amount of xylose and/or fucose and of galactose.List of Abbreviation TFA trifluoroacetic acid  相似文献   

6.
Changes in the composition of cotton fibre cell walls during development   总被引:3,自引:0,他引:3  
H. R. Huwyler  G. Franz  H. Meier 《Planta》1979,146(5):635-642
Purified cell walls, prepared from cotton fibres (Gossypium arboreum L.) at different growth stages, were subjected to successive extractions to give pectic, hemicellulosic, and -cellulosic fractions. The protein content and sugars obtained after hydrolysis of the total cell walls and of the various fractions were quantitatively estimated. The amount of protein in the fibre cell walls from one ovule reached a maximum value at the end of the elongation growth, decreased, and then reached a second maximum at the end of the secondary wall deposition. The absolute amounts of fucose, galactose, mannose, rhamnose, arabinose, uronic acid, and non-cellulosic glucose residues all reached a maximum at the end of the primary wall formation or at the beginning of the secondary wall formation. Only the absolute amounts of xylose and of the cellulosic glucose residues increased until the end of the fibre development. Most conspicuous was the decrease in the absolute amounts of non-cellulosic glucose and of arabinose residues during the secondary wall formation, possibly indicating a turnover of at least some of the hemicellulosic wall material.Abbreviations DPA days post anthesis - TLC thin layer chromatography - SDS sodium dodecyl sulphate  相似文献   

7.
The release and degradation of sugars from onion cell walls and potato cell wall polysaccharides were followed during hydrolysis with trifluoroacetic acid so that the optimum hydrolysis conditions could be determined. After 6 hr hydrolysis in 2 M acid at 100°, calculated recovery factors of different monosaccharides from potato pectic fractions ranged from 61 to 96%. Lower yields of monosaccharides were obtained from intact onion cell walls, while the yield from cellulose was less than 0.2%. A new GLC column for the separation of alditol acetates derived from cell wall sugars is described.  相似文献   

8.
The neutral sugars and amino sugars, released by acid hydrolysis of walls and polysaccharidic fractions, of six species of Talaromyces and the infrared spectra have been used to study their interspecific relationships. In whole cell walls neutral sugars ranged from 23 to 39.6% dry weight and were identified as glucose, galactose and mannose. Glucosamine varied from 8 to 19.8% in the samples. Galactosamine (2% or less) was found in T. emersonii and T. rotundus and no galactosamine in the other species. Sequential fractionation of the cell walls with alkali and acid gave several polysaccharidic fractions. The main differences among species were found in the alkali-soluble fraction at 20° (F1). This fraction represented 8 to 33.2% of the whole cell wall and was characterized as an -glucan in T. bacillisporus, T. emersonii, T. luteus and T. rotundus (Group A) and as a -galactofuranosyl containing glucan in T. ohiensis and T. stipitatus (Group B). The alkali-insoluble residue (F4) represented the bulk of the cell wall in all species tested (33.2% to 57.3%) and was characterized as a -glucan/chitin complex. The results may indicate degrees of interspecific relationship in the genus Talaromyces.Abbreviations CWM cell wall material - GLC gas-liquid chromatography - IR infrared - wt weight - CBS Centraal Bureau voor Schimmelcultures (Baarn. The Netherlands) - Ara arabinose - Xyl xylose - Man mannose - Gal galactose - Glc glucose - GlcNH2 glucosamine - GalNH2 galactosamine  相似文献   

9.
The endosperm of the seed of Gleditsia triacanthos L. contains 18.55% of its dry weight as nonreserve, cell-wall carbohydrates. Of this carbohydrate material, comprising mainly mannose, galactose, and glucose, 76.1% was of low-molecular weight or highly hydrophilic. Mannose, galactose, and glucose were also the major sugar components of the polysaccharides extracted with alkali (23.1% of the cell-wall), while the same sugars, with minor amounts of arabinose, form the residues. Methylation analysis of the polysaccharides and the borate-sodium hydroxide residue indicate that the cell walls are built up on a network of galactomannans, with high Man/Gal ratios, reinforced with minor amounts of cellulose.  相似文献   

10.
Jean-Pierre Métraux 《Planta》1982,155(6):459-466
Changes in the uronide, neutral-polysacharide, and cellulose composition of the cell wall ofNitella axillaris Braun were followed throughout development of the internodes and correlated with changes in growth rate. As the cells increased in length from 4 to 80 mm during development, the relative growth rate decreased. Cell wall thickness, as measured by wall density, increased in direct proportion to diameter, indicating that cell-wall stress did not change during elogation. Cell-wall analyses were adapted to allow determination of the composition of the wall of single cells. The total amounts of uronides, neutral sugars and cellulose all increased during development. However, as the growth rate decreased, the relative proportions of uronides and neutral sugars, expressed as percent of the dry weight of the wall, decreased, while the proportion of cellulose increased. The neutral sugars liberated upon hydrolysis ofNitella walls are qualitatively similar to those found in hydrolysates of higher plant cell walls: glucose, xylose, mannose, galactose, arabinose fucose and rhamnose. Only the percentage of galactose was found to increase in walls of mature cells, while the percentage of all other sugars decreased. The rate of apposition (g of wall material deposited per unit wall surface area per hour) of neutral polysaccharides decreased rapidly with decreasing growth rate during the early stages of development. The rate of apposition of uronides decreased more steadily throughout development, while that of cellulose, after an early decline, remained constant until dropping off at the end of the elongation period. These correlations between decreasing growth rate and decreasing rate of apposition of neutral sugars and uronides indicate that synthesis of these cell-wall components could be involved in the regulation of the rate of cell elongation inNitella.  相似文献   

11.
The carbohydrate composition of the cell walls from spores, mycelium and sporangiophores of Phycomyces blakesleeanus was analyzed. Spore wall polysaccharides contained over 50% glucose, about 20% uronic acids, 10% mannose and 10% amino-sugars. During the growth of the hyphae amino-sugars became the main carbohydrate (45%); uronic acids contributed some 25%, glucose and fucose 10% and galactose nearly 6%. Sporangiophores contained almost 90% aminosugars and some 6% uronic acids. Traces of rhamnose were found in all wall preparations. A similar picture emerged from studies on the incorporation of [U-14C]-glucose into wall materials.Furthermore we looked for a GDP-fucose synthesizing system and found an increasing activity during early germination. This rise in activity was inhibited by cycloheximide but not by 5-fluorouracil.  相似文献   

12.
Summary Sonic oscillation was used for the purpose of obtaining clean, chemically intact cell walls. The rate of disruption was determined for cells ofHanseniaspora uvarum andSaccharomyces cerevisiae. The carbohydrate fractions of cell walls ofHanseniaspora uvarum, H. valbyensis, Kloeckera apiculata, Saccharomycodes ludwigii andSaccharmyces cerevisiae were shown to be similar. Chromatography of cell wall hydrolysates of all these species demonstrated that glucose and mannose were the only sugars present (in about equal amounts) besides traces of glucosamine. The cell walls ofH. uvarum contained 78.1 per cent carbohydrates, 7 per cent protein and approximately 0.05 per cent of chitin. Fractionation of the polysaccharides lead to a recovery of 83.3 per cent of the carbohydrates present (30.4 per cent glucan and 34.9 per cent mannan). Saccharomyces cerevisiae cell walls were found to have a carbohydrate content of 82.8 per cent, 6.5 per cent protein and a trace of chitin (0.04 per cent). Nadsonia elongata contained a relatively large amount of chitin (ca. 5 per cent) and lacked mannan in its cell walls. It was concluded thatHanseniaspora andSaccharomycodes are closely related to theSaccharomyceteae but they have little in common with species ofNadsonia.  相似文献   

13.
The two-layered, fibrillar cell wall of Mougeotia C. Agardh sp. consisted of 63.6% non-cellulosic carbohydrates and 13.4% cellulose. The orientation of cellulose microfibrils in the native cell wall agrees with the multinet growth hypothesis, which has been employed to explain the shift in microfibril orientation from transverse (inner wall) toward axial (outer wall). Monosaccharide analysis of isolated cell walls revealed the presence of ten sugars with glucose, xylose and galactose most abundant. Methylation analysis of the acid-modified, 1 N NaOH insoluble residue fraction showed that it was composed almost exclusively of 4-linked glucose, confirming the presence of cellulose. The major hemicellulosic carbohydrate was semi-purified by DEAE Sephacel (Cl?) anion-exchange chromatography of the hot 1 N NaOH soluble fraction. This hemicellulose was a xylan consisting of a 4-xylosyl backbone and 2,4-xylosyl branch points. The major hot water soluble neutral polysaccharide was identified as a 3-linked galactan. Mougeotia cell wall composition is similar to that of (Charophyceae) and has homologies with vascular plant cell walls. Our observations support transtructural evidence which suggests that members of the Charophyceae represent the phylogenetic line that gave rise to vascular plants. Therefore, the primary cell walls of vascular plants many have evolved directly from structures typical of the filamentous green algal cell walls found in the Charophyceae.  相似文献   

14.
Zusammenfassung Zellwände und Keimschläuche von Uredosporen des Weizenrostes (Puccinia graminis var. tritici) wurden isoliert, und ihre chemische Zusammensetzung wurde quantitativ untersucht. Als gemeinsame Bausteine enthalten Sporenwände und Keimschlauchwände Proteine, Lipide und die Neutralzucker Galaktose, Glucose und Mannose. Die einzelnen Komponenten liegen in unterschiedlicher Menge vor. Auch qualitativ unterscheiden sich die Sporenwände und die Keimschlauchwände: Melanin ist nur in den Sporenwänden vorhanden, in den Keimschlauchwänden dagegen nicht. Der polymer gebundene Aminozucker der Keimschlauchwände ist N-Acetylglucosamin, das mit großer Wahrscheinlichkeit als Chitin vorliegt. Die Sporenwände enthalten dagegen polymeres Glucosamin (vermutlich Chitosan).Sporenwände sind in 3% iger NaOH löslich. Aus diesem Extrakt läßt sich mit Fehlingscher Lösung ein Galaktoglucomannan fällen, das überwiegend aus Mannose besteht. Aus der entsprechenden Fraktion der Keimschlauchwände, in der ebenfalls Mannose überwiegt, kann mit Fehlingscher Lösung kein Mannan gewonnen werden. Der in NaOH unlösliche Satz der Keimschlauchwände ist zum größten Teil aus Glucose und N-Acetylglucosamin aufgebaut. Es gibt keine identischen Polysaccharidfraktionen von Sporen- und Keimschlauchwänden. Sie sind heteropolymer und setzen sich jeweils aus Galaktose, Glucose und Mannose zusammen.
Investigations on the chemical composition of spore walls and germ tube walls of wheat rust (Puccinia graminis var. tritici) uredospores
Summary Spore walls and germ tube walls from uredospores of wheat stem rust (Puccinia graminis var. tritici) were isolated and their chemical compositions determined quantitatively. The spore and germ tube walls are commonly composed of proteins, lipids, and the neutral sugars mannose, glucose and galactose. Carbon and nitrogen content, total lipids, composition of bound amino acids, total glucosamine and chitin content, and neutral sugars of spore and germ tube walls were compared. While the carbon content of the germ tube walls is only slightly higher than that of the spore walls, the germ tube walls contain twice as much nitrogen and lipids as the spore walls. The higher nitrogen content of the germ tube walls is due to higher amounts of bound amino acids and hexosamine. The polymeric germ tube wall hexosamine is insoluble in 3% NaOH, while the bulk of the polymeric spore wall hexosamine will go into solution when treated with 3% NaOH. The polymeric amino sugar of the germ tube wall is N-acetylglucosamine, which in all probability is present as chitin. In comparison, spore walls contain polymeric glucosamine (probably chitosan).The predominant neutral sugar of the spore walls is polymeric mannose (90%) while the germ tube walls contain polymeric glucose and mannose in nearly equal amounts. Galactose occurs in both wall types as a minor constituent.From spore walls completely dissolved in 3% NaOH we were able to precipitate a galactoglucomannan with fehling's solution. This galactoglucomannan was composed mainly of mannose. The corresponding fraction of the germ tube wall gave no precipitate with Fehling's solution. An alkali insoluble fraction of the germ tube wall consists mainly of glucose and N-acetylglucosamine. There are no identical polysaccharide fractions in spore walls and germ tube walls. They are always heteropolymers. Melanine is found in spore walls but not in germ tube walls.
  相似文献   

15.
Cell walls isolated from Lolium multiflorum endosperm grown in liquid suspension culture contain 90% carbohydrate (as anhydro-glucose), 0·3 nitrogen, 1·9% lipid and 4·3% ash. The relative proportions of neutral sugars present in hydrolysates of the wall polysaccharides are glucose, 50%; arabinose, 19%; xylose, 26% and galactose, 5%. Extraction of the wall with 7 M urea solubilizes a polysaccharide representing 19% of the wall and composed of glucose and minor amounts of pentoses. This fraction has been examined by acid and enzymic hydrolysis and by periodate oxidation, and was shown to be a β-1,3; 1,4-glucan with approx. 79% 1,4-linkages. A specific β-glucan hydrolase has been used to determine the content of this mixed-linked glucan in isolated endosperm cell walls.  相似文献   

16.
Commercial defatted germ from wet milled corn was efficiently saccharified by a crude enzyme preparation from Aureobasidium sp. with yields of up to 200 mg glucose, 140 mg xylose, and 130 mg arabinose per g germ. These yields exceeded sugar composition estimates based on trifluoroacetic acid digestion. Neither chemical nor mechanical pretreatments were necessary. Results from independent lots of defatted germ were similar. Enzymatically digested germ residues were enriched to 40% (w/v) protein. Defatted germ from dry milled corn contained approx. 50% more starch than wet milled germ and was saccharified to produce up to 315 mg glucose per g germ with reduced yields of pentose sugars.  相似文献   

17.
Changes in the biochemical composition of isolated cell walls were analysed during the differentiation of coremia and rhizomorphs in Sphaerostilbe repens.Differentiation was accompanied by exclusively quantitative variations of the wall components: the content in carbohydrates, chitin and free amino sugars increased; on the contrary, amino acids, uronic acids, lipids and mineral substances decreased.Carbohydrates were composed of glucose, galactose and mannose; glucosamine was the main component of amino sugars. The predominant amino acid in the walls was cysteine the amount of which increased during hyphal aggregation, while quantities of the sixteen other determined amino acids decreased.Mineral matter was present in large quantities in the walls of the fungus, especially in vegetative mycelium. Iron, phosphorus and calcium were the most abundant elements.Possible relations between the variations in chemical composition of the wall and the capability of hyphae to aggregate are discussed.  相似文献   

18.
Conidial walls of wild-type and white mutantAspergillus nidulans were purified. Chemical analysis showed that the conidial wall of the wild-type strain contained neutral carbohydrate, protein, chitin, melanin, and small amounts of lipid. The neutral sugars were glucose, galactose, and mannose. Chemical fractionation experiments indicated the presence of -1,3-glucan in the wild-type conidial wall. The conidial wall of the white mutant strain lacked melanin and -1,3-glucan, and contained twice as much galactose as that of the wild-type strain. The protein(s) of the white mutant wall contained fifteen amino acids. Transmission electron microscopy showed that the wild-type conidial wall was composed of an electron-dense outer layer, irregular in thickness and containing the -1,3-glucan, an electron-translucent middle layer, and a thin inner layer intimately associated with the plasma membrane. Conidial walls of the white mutant strain lacked the electron-dense outer layer.  相似文献   

19.
Resistance of Zygorhynchus Species to Lysis   总被引:3,自引:1,他引:2       下载免费PDF全文
Zygorhynchus vuilleminii, a nonmelanin-containing fungus, was not lysed by mycolytic actinomycetes. Several enzymes and Streptomyces enzyme preparations digesting walls of other fungi were without appreciable activity on walls of Zygorhynchus species. A bacterium able to solubilize a portion of the Zygorhynchus wall released little or no reducing sugars from these structures. Fractions of Z. vuilleminii walls were resistant to glucanase hydrolysis, but certain fractions were digested by chitinase and microbial enzyme preparations. The walls and several wall fractions were not readily susceptible to degradation by a soil community. Walls of lysis-resistant Zygorhynchus species contained glucosamine, fucose, glucuronic acid, and galactose but little or no glucose. Resistant wall fractions were rich in uronic acid and fucose, whereas the readily degradable fractions contained abundant glucosamine. Cultural conditions affected the extent of digestion and composition of the walls. Possible reasons for the resistance of Zygorhynchus to lysis in nature are discussed.  相似文献   

20.
The composition of the cell wall of the cotton fiber (Gossypium hirsutum L. Acala SJ-1) has been studied from the early stages of elongation (5 days postanthesis) through the period of secondary wall formation, using cell walls derived both from fibers developing on the plant and from fibers obtained from excised, cultured ovules. The cell wall of the elongating cotton fiber was shown to be a dynamic structure. Expressed as a weight per cent of the total cell wall, cellulose, neutral sugars (rhamnose, fucose, arabinose, mannose, galactose, and noncellulosic glucose), uronic acids, and total protein undergo marked changes in content during the elongation period. As a way of analyzing absolute changes in the walls with time, data have also been expressed as grams component per millimeter of fiber length. Expressed in this way for plant-grown fibers, the data show that the thickness of the cell wall is relatively constant until about 12 days postanthesis; after this time it markedly increases until secondary wall cellulose deposition is completed. Between 12 and 16 days postanthesis increases in all components contribute to total wall increase per millimeter fiber length. The deposition of secondary wall cellulose begins at about 16 days postanthesis (at least 5 days prior to the cessation of elongation) and continues until about 32 days postanthesis. At the time of the onset of secondary wall cellulose deposition, a sharp decline in protein and uronic acid content occurs. The content of some of the individual neutral sugars changes during development, the most prominent change being a large increase in noncellulosic glucose which occurs just prior to the onset of secondary wall cellulose deposition. Methylation analyses indicate that this glucose, at least in part, is 3-linked. In contrast to the neutral sugars, no significant changes in cell wall amino acid composition are observed during fiber development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号