首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genes encoding acetyl xylan esterase 1 (axe1) and a beta-xylosidase (xylB) have been cloned and sequenced from Thermoanaerobacterium sp. strain JW/SL YS485. axe1 is located 22 nucleotides 3' of the xylB sequence. The identity of axe1 was confirmed by comparison of the deduced amino acid sequence to peptide sequence analysis data from purified acetyl xylan esterase 1. The xylB gene was identified by expression cloning and by sequence homology to known beta-xylosidases. Plasmids which independently expressed either acetyl xylan esterase 1 (pAct1BK) or beta-xylosidase (pXylo-1.1) were constructed in Escherichia coli. Plasmid pXylAct-1 contained both genes joined at a unique EcoRI site and expressed both activities. Substrate specificity, pH, and temperature optima were determined for partially purified recombinant acetyl xylan esterase 1 and for crude recombinant beta-xylosidase. Similarity searches showed that the axe1 and xylB genes were homologs of the ORF-1 and xynB genes, respectively, isolated from Thermoanaerobacterium saccharolyticum. Although the deduced sequence of the axe1 product had no significant amino acid sequence similarity to any reported acetyl xylan esterase sequence, it did have strong similarity to cephalosporin C deacetylase from Bacillus subtilis. Recombinant acetyl xylan esterase 1 was found to have thermostable deacetylase activity towards a number of acetylated substrates, including cephalosporin C and 7-aminocephalosporanic acid.  相似文献   

2.
The Brucella ovis dnaK gene, homolog to the eukaryotic hsp70 genes, was cloned by using a Drosophila melanogaster probe. Comparison of B. ovis and Escherichia coli sequences revealed a similar organization for the dnaK and dnaJ genes and putative regulatory signals. In E. coli transfected with the cloned fragment, B. ovis hsp70 was expressed at 30 and 50 degrees C apparently under the control of its own promoter. The recombinant protein and a B. ovis native protein displaying the same molecular weight were both recognized by anti-E. coli DnaK serum. Native B. ovis protein was also recognized by sera of sheep either infected or vaccinated with an attenuated Brucella strain, suggesting that Brucella hsp70 could be up-regulated during host colonization. A thermosensitive E. coli dnaK mutant transfected with the cloned fragment recovered colony-forming ability at 42 degrees C, showing that the B. ovis DnaK protein could behave as a functional heat shock protein in E. coli.  相似文献   

3.
谷胱甘肽S-转移酶(Glutathione S-transferase,GST)在帮助植物抵抗各种胁迫中发挥重要作用。该研究从江南卷柏Selaginella moellendorffii中克隆到两个Phi类GST基因,分别命名为Sm GSTF1和Sm GSTF2,两个基因均编码215个氨基酸残基的蛋白质。表达模式分析发现,这两个基因在江南卷柏根、茎和叶中均有表达。将这两个基因在大肠杆菌中诱导表达重组蛋白并纯化,酶学性质分析表明Sm GSTF1和Sm GSTF2对CDNB、NBD-Cl和NBC等3种底物都有活性。Sm GSTF1对Fluorodifen和Cum-OOH也有活性,而Sm GSTF2对它们没有活性。酶动力学分析表明Sm GSTF1和Sm GSTF2对GSH有较高的亲和力,而对CDNB的亲和力都相对较低。在不同p H及温度条件下对Sm GSTF1和Sm GSTF2重组蛋白进行活性测定,发现这两个蛋白在p H 7-8.5,45-55℃温度范围内有较高的催化活性。研究推测,Sm GSTF1和Sm GSTF2可能在江南卷柏的抗逆生理过程中有重要的作用。  相似文献   

4.
Four open reading frames encoding putative nitrilases were identified in the genomes of the hyperthermophilic archaea Pyrococcus abyssi, Pyrococcus horikoshii, Pyrococcus furiosus, and Aeropyrum pernix (growth temperature 90-100 degrees C). The nitrilase encoding genes were cloned and overexpressed in Escherichia coli. Enzymatic activity could only be detected in the case of Py. abyssi. This recombinant nitrilase was purified by heat treatment of E. coli crude extract followed by anion-exchange chromatography with a yield of 88% and a specific activity of 0.14 U/mg. The recombinant enzyme, which represents the first archaeal nitrilase, is a dimer (29.8 kDa/subunit) with an isoelectric point of pI 5.3. The nitrilase is active at a broad temperature (60-90 degrees C) and neutral pH range (pH 6.0-8.0). The recombinant enzyme is highly thermostable with a half-life of 25 h at 70 degrees C, 9 h at 80 degrees C, and 6 h at 90 degrees C. Thermostability measurements by employing circular dichroism spectroscopy and differential scanning microcalorimetry, at neutral pH, have shown that the enzyme unfolds up to 90 degrees C reversibly and has a T(m) of 112.7 degrees C. An inhibition of the enzymatic activity was observed in the presence of acetone and metal ions such as Ag(2+) and Hg(2+). The nitrilase hydrolyzes preferentially aliphatic substrates and the best substrate is malononitrile with a K(m) value of 3.47 mM.  相似文献   

5.
A recombinant lambda phage which was able to propagate in groE mutants of Escherichia coli was isolated from a Chromatium vinosum genomic DNA library. A 4-kbp SalI DNA fragment, isolated from this phage and subcloned in plasmid vectors, carried the C. vinosum genes that allowed lambda growth in these mutants. Sequencing of this fragment indicated the presence of two open reading frames encoding polypeptides of 97 and 544 amino acids, respectively, which showed high similarity to the molecular chaperones GroES and GroEL, respectively, from several eubacteria and eukaryotic organelles. Expression of the cloned C. vinosum groESL genes in E. coli was greatly enhanced when the cells were transferred to growth temperatures that induce the heat shock response in this host. Coexpression in E. coli of C. vinosum groESL genes and the cloned ribulose bisphosphate carboxylase/oxygenase genes from different phototrophic bacteria resulted in an enhanced assembly of the latter enzymes. These results indicate that the cloned DNA fragment encodes C. vinosum chaperonins, which serve in the assembly process of oligomeric proteins. Phylogenic analysis indicates a close relationship between C. vinosum chaperonins and their homologs present in pathogenic species of the gamma subdivision of the eubacterial division Proteobacteria.  相似文献   

6.
7.
Glutathione S-transferases (GSTs) are multifunctional phase II detoxification enzymes that catalyze the attachment of electrophilic substrates to glutathione. The pi-class GST cDNA (leGSTp) was cloned from the cold-adapted Antarctic bivalve Laternula elliptica. We used degenerated primers designed based on highly conserved regions of known mollusk GSTs to amplify the corresponding L. elliptica mRNA. Full-length cDNA was obtained by rapid amplification of cDNA ends (RACE). The full sequence of the GST cDNA was 1189 bp in length, with a 5' untranslated region (UTR) of 74 bp, a 3' UTR of 485 bp, and an open reading frame of 630 bp encoding 209 amino acid residues with an estimated molecular mass of 23.9 kDa and an estimated isoelectric point of 8.3. Quantitative RT-PCR confirmed basal expression of leGSTp, which was up-regulated upon heat treatment (10 degrees C for different time periods) by a factor of 2.3 (at 24 h) and 2.7 (at 48 h) in the digestive gland and gill tissues, respectively. The recombinant leGSTp expressed in Escherichia coli was purified by affinity chromatography and characterized. The purified leGSTp exhibited high activity towards the substrates ethacrynic acid (ECA) and 1-chloro-2,4-dinitrobenzene (CDNB). The recombinant leGSTp had a maximum activity at approximately pH 8.0, and its optimum temperature was 35 degrees C.  相似文献   

8.
We have isolated recombinant DNA clones which include cDNA and chromosomal DNA sequences of the major heat shock-inducible gene of Drosophila. With the cDNA fragments used as specific hybridization probes, DNA:DNA reassociation and in situ hybridization analysis demonstrated that the DNA sequences are repeated approximately 7 times in the haploid Drosophila genome, and that gene sequences are present at both the 87A and 87C loci on the cytological map. The cloned cDNA and homologous cloned chromosomal DNA hybridized to mRNA which translated in vitro into the major 70K heat shock-specific protein. Here we summarize a study of the organization of genes coding for the 70K heat shock-specific protein contained in the two recombinant chromosomal DNA plasmids pG3 and pG5. On the basis of R loop hybridization experiments and restriction enzyme analysis, we conclude that a 14 kb fragment, G3, contains three copies of the gene coding for the 70K protein. A second 9.2 kb fragment, G5, contains one copy of the gene coding for the 70K protein. Hybridization of labeled poly(A)-containing RNA to restriction endonuclease-cleaved DNA indicates that the mRNA coding regions in G3 and G5 are each approximately 2100 bp long. The three tandemly repeated genes of G3 are separated by approximately 1400 bp of spacer DNA. The two internal spacer regions in G3 appear to be identical, whereas differences in restriction enzyme sites indicate that the sequences adjacent to the cluster differ from the internal spacer and from each other.  相似文献   

9.
10.
11.
Monoclonal antibodies are leading agents for therapeutic treatment of human diseases, but are limited in use by the paucity of clinically relevant models for validation. Sporadic canine tumours mimic the features of some human equivalents. Developing canine immunotherapeutics can be an approach for modeling human disease responses. Rituximab is a pioneering agent used to treat human hematological malignancies. Biologic mimics that target canine CD20 are just being developed by the biotechnology industry. Towards a comparative canine-human model system, we have developed a novel anti-CD20 monoclonal antibody (NCD1.2) that binds both human and canine CD20. NCD1.2 has a sub-nanomolar Kd as defined by an octet red binding assay. Using FACS, NCD1.2 binds to clinically derived canine cells including B-cells in peripheral blood and in different histotypes of B-cell lymphoma. Immunohistochemical staining of canine tissues indicates that the NCD1.2 binds to membrane localized cells in Diffuse Large B-cell lymphoma, Marginal Zone Lymphoma, and other canine B-cell lymphomas. We cloned the heavy and light chains of NCD1.2 from hybridomas to determine whether active scaffolds can be acquired as future biologics tools. The VH and VL genes from the hybridomas were cloned using degenerate primers and packaged as single chains (scFv) into a phage-display library. Surprisingly, we identified two scFv (scFv-3 and scFv-7) isolated from the hybridoma with bioactivity towards CD20. The two scFv had identical VH genes but different VL genes and identical CDR3s, indicating that at least two light chain mRNAs are encoded by NCD1.2 hybridoma cells. Both scFv-3 and scFv-7 were cloned into mammalian vectors for secretion in CHO cells and the antibodies were bioactive towards recombinant CD20 protein or peptide. The scFv-3 and scFv-7 were cloned into an ADEPT-CPG2 bioconjugate vector where bioactivity was retained when expressed in bacterial systems. These data identify a recombinant anti-CD20 scFv that might form a useful tool for evaluation in bioconjugate-directed anti-CD20 immunotherapies in comparative medicine.  相似文献   

12.
Liu J  Shono M 《Plant & cell physiology》1999,40(12):1297-1304
We cloned and sequenced a full-length cDNA encoding the precursor of the mitochondria-located small heat shock protein (MT-sHSP) gene (LeHSP23.8) from tomato (Lycopersicon esculentum). The deduced protein precursor with a calculated molecular weight of 23.8 kDa was predicted to target mitochondria and was classified as a plant MT-sHSP. A single copy of LeHSP23.8 was found in tomato genomic DNA by southern-blot analysis. Northern-blot analysis revealed the heat inducible character of LeHSP23.8 mRNA. The LeHSP23.8 mRNA was hardly detectable at about 36 degrees C but accumulated markedly at 40 degrees C. The molecular chaperone function of LeHSP23.8 was confirmed in vitro. The recombinant LeHSP23.8 was able to enhance the renaturation of chemically denatured citrate synthase (CS). Moreover, the recombinant LeHSP23.8 protected CS from thermal inactivation and also promoted the renaturation of thermally inactivated citrate synthase.  相似文献   

13.
To effectively achieve tight regulation and high-level expression of cloned genes, a novel expression plasmid has been developed to contain the promoter and allow the plasmid copy number to be controlled by heat. The feasibility of the plasmid was tested by overproducing the pck gene product (Pck), a protein responsible for cell growth on gluconeogenic carbons and with potential toxicity. By fusing the pck gene with the promoter on the plasmid, the Escherichia coli strain harboring the composite vector was shown to produce various amounts of Pck in response to different degrees of heat shock. With the use of a 30 degrees -->41 degrees C stepwise upshift, the shake-flask culture of recombinant cells enabled production of maximal Pck in soluble form accounting for 20% of total cell protein. In sharp contrast, Pck production was undetectable in the uninduced cell, and this was further confirmed by the failed growth of strain JCL1305, defective in the essential genes for gluconeogenesis, carrying the composite vector on succinate at 30 degrees C. By exploiting the fed-batch fermentation approach, the recombinant cell batch initially kept at 30 degrees C in a lab-scale fermentor was exposed to 41 degrees C for 2 h at the batch fermentation stage, followed by a reduction in temperature to 37 degrees C throughout the remainder of the culturing process. Consequently, this resulted in Pck production equivalent to 15% of total cell protein. The total Pck yield thus calculated was amplified 1880-fold over that obtained at the shake-flask scale. Overall, there is great promise for this expression system due to its tight control, high production, simple thermomodulation, and feasible scale-up of recombinant proteins.  相似文献   

14.
Clostridium acetobutylicum P262 endoglucanase and cellobiase genes, cloned on a 4.9 kb DNA fragment in the recombinant plasmid pHZ100, were expressed from their own promoter in Escherichia coli. Active carboxymethylcellulase and cellobiase enzymes were produced, but there was no degradation of Avicel. The endoglucanase activities observed in cell extracts of E. coli HB101(pHZ100) differed in their pH and temperature optima from those previously reported for C. acetobutylicum P270. Complementation of E. coli arg and his mutations by cloned C. acetobutylicum DNA was also observed.  相似文献   

15.
16.
17.
The coat protein (CP) of Papaya ringspot virus (PRSV) was analyzed for presentation of the antigenic peptide of animal virus, Canine parvovirus (CPV), in Escherichia coli (E. coli). The 45 nucleotides fragment coding for the 15-aa peptide epitope of the CPV-VP2 protein was either inserted into the PRSV-cp gene at the 5', 3' ends, both 5' and 3' ends or substituted into the 3' end of the PRSV cp gene. Each of the chimeric PRSV cp genes was cloned into the pRSET B vector under the control of the T7 promoter and transformed into E. coli. The recombinant coat proteins expressed from different chimeric PRSV-cp genes were purified and intraperitoneally injected into mice. All of the recombinant coat proteins showed strong immunogenicity and stimulate mice immune response. The recombinant coat proteins containing the CPV epitope insertion at the C terminus and at both N and C termini elicited ten times higher specific antisera in immunized mice compared with the other two recombinant coat proteins which contain the CPV epitope insertion at the N terminus and substitution at the C terminus.  相似文献   

18.
A gene encoding for a putative Family I inorganic pyrophosphatase (PPase, EC 3.6.1.1) from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 was cloned and the biochemical characteristics of the resulting recombinant protein were examined. The gene (Accession No. 1907) from P. horikoshii showed some identity with other Family I inorganic pyrophosphatases from archaea. The recombinant PPase from P. horikoshii (PhPPase) has a molecular mass of 24.5 kDa, determined by SDS-PAGE. This enzyme specifically catalyzed the hydrolysis of pyrophosphate and was sensitive to NaF. The optimum temperature and pH for PPase activity were 70 degrees C and 7.5, respectively. The half-life of heat inactivation was about 50 min at 105 degrees C. The heat stability of PhPPase was enhanced in the presence of Mg2+. A divalent cation was absolutely required for enzyme activity, Mg2+ being most effective; Zn2+, Co2+ and Mn2+ efficiently supported hydrolytic activity in a narrow range of concentrations (0.05-0.5 mM). The K(m) for pyrophosphate and Mg2+ were 113 and 303 microM, respectively; and maximum velocity, V(max), was estimated at 930 U mg(-1).  相似文献   

19.
Three thermostable lactose-hydrolases, namely, two beta-glycosidases (bglA and bglB) and one beta-galactosidase (bgaA) genes were cloned from the genomic library of Thermus sp. IB-21. The bglA, bglB, and bgaA consisted of 1311 bp (436 amino acid residues), 1296 bp (431 aa), and 1938 bp (645 aa) of nucleotides with predicted molecular masses of 49,066, 48,679, and 72,714 Da, respectively. These enzymes were overexpressed in Escherichia coli BL21(DE3) using pET21b(+) vector system. The recombinant enzymes were purified to homogeneity by a heat precipitation (70 degrees C, 40 min) and a Ni2+-affinity chromatography. The molecular masses of the purified enzymes estimated by SDS-PAGE agreed with their predicted values. All the purified enzymes showed their optimal pH at around 5.0-6.0. In contrast, the temperature profiles for activity and thermostability patterns were different for each enzyme. BglB beta-glycosidase displayed the best lactose hydrolysis activity of the three enzymes without substrate inhibition up to 200 mM lactose at 70 degrees C and pH 7.0. The specific activities (U/mg) of BglA, BglB, and BgaA on 138 mM lactose at 70 degrees C and pH 7.0 were 36.8, 160.3, and 8.5, respectively.  相似文献   

20.
A gene encoding a subtilisin-like protease, designated islandisin, from the extremely thermophilic bacterium Fervidobacterium islandicum (DSMZ 5733) was cloned and actively expressed in Escherichia coli. The gene was identified by PCR using degenerated primers based on conserved regions around two of the three catalytic residues (Asp, His, and Ser) of subtilisin-like serine protease-encoding genes. Using inverse PCR regions flanking the catalytic residues, the gene could be cloned. Sequencing revealed an open reading frame of 2,106 bp. The deduced amino acid sequence indicated that the enzyme is synthesized as a proenzyme with a putative signal sequence of 33 amino acids (aa) in length. The mature protein contains the three catalytic residues (Asp177, His215, and Ser391) and has a length of 668 aa. Amino acid sequence comparison and phylogenetic analysis indicated that this enzyme could be classified as a subtilisin-like serine protease in the subgroup of thermitase. The whole gene was amplified by PCR, ligated into pET-15b, and successfully expressed in E. coli BL21(DE3)pLysS. The recombinant islandisin was purified by heat denaturation, followed by hydroxyapatite chromatography. The enzyme is active at a broad range of temperatures (60 to 80 degrees C) and pHs (pH 6 to 8.5) and shows optimal proteolytic activity at 80 degrees C and pH 8.0. Islandisin is resistant to a number of detergents and solvents and shows high thermostability over a long period of time (up to 32 h) at 80 degrees C with a half-life of 4 h at 90 degrees C and 1.5 h at 100 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号