首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Identification of Birds through DNA Barcodes   总被引:37,自引:2,他引:35       下载免费PDF全文
Short DNA sequences from a standardized region of the genome provide a DNA barcode for identifying species. Compiling a public library of DNA barcodes linked to named specimens could provide a new master key for identifying species, one whose power will rise with increased taxon coverage and with faster, cheaper sequencing. Recent work suggests that sequence diversity in a 648-bp region of the mitochondrial gene, cytochrome c oxidase I (COI), might serve as a DNA barcode for the identification of animal species. This study tested the effectiveness of a COI barcode in discriminating bird species, one of the largest and best-studied vertebrate groups. We determined COI barcodes for 260 species of North American birds and found that distinguishing species was generally straightforward. All species had a different COI barcode(s), and the differences between closely related species were, on average, 18 times higher than the differences within species. Our results identified four probable new species of North American birds, suggesting that a global survey will lead to the recognition of many additional bird species. The finding of large COI sequence differences between, as compared to small differences within, species confirms the effectiveness of COI barcodes for the identification of bird species. This result plus those from other groups of animals imply that a standard screening threshold of sequence difference (10× average intraspecific difference) could speed the discovery of new animal species. The growing evidence for the effectiveness of DNA barcodes as a basis for species identification supports an international exercise that has recently begun to assemble a comprehensive library of COI sequences linked to named specimens.  相似文献   

2.
Bird-aircraft collisions (birdstrikes) pose a major threat to aviation safety worldwide. The bird distribution at the airfield of Huanghua International Airport in Changsha, Hunan Province, China, was investigated between December of 2006 and December of 2008, to study birdstrike avoidance and aviation safety. A total of 60 bird species was found and their risks were assessed by a birdstrike ranking assessment system. The highest-risk species were Barn swallow (Hirundo rustica), Red-rumped swallow (H. daurica), Grey-headed lapwing (Vanellus cinereus), Pintail snipe (Gallinago stenura), Oriental skylark (Alauda gulgula), Little egret (Egretta garzetta), and Eurasian woodcock (Scolopax rusticola), whereas the lowest-risk species were Black-capped kingfisher (Halcyon pileata) and White-throated kingfisher (H. smyrnensis). Through a hierarchical cluster analysis, all species were classified as four groups: (1) the extremely high-risk group with a risk level between 84% and 100%, which includes bird species ranked from the 1st to the 16th, and is the priori group in birdstrike prevention; (2) the high-risk group with a risk level between 71% and 81%, which includes bird species ranked from the 17th to the 28th, and is the sub-prior group in birdstrikes; (3) the sub-high-risk group with a risk level between 60% and 69%, which includes bird species ranked from the 29th to the 43rd, and is the concern group in birdstrike prevention; (4) the low-risk group with a risk level between 60% and 69%, which includes bird species ranked from the 44th to the 60th, and is the negligible group in birdstrike prevention. Finally, the first 16 bird species with high-risk values, which are the main focus of birdstrike prevention, were categorized as six prevention groups by a hierarchical cluster analysis. Therefore, this study provides targeted implementations for birdstrike prevention at Huanghua International Airport, Changsha.  相似文献   

3.
Bird-aircraft collisions (birdstrikes) pose a major threat to aviation safety worldwide. The bird distribution at the airfield of Huanghua International Airport in Changsha, Hunan Province, China, was investigated between December of 2006 and December of 2008, to study birdstrike avoidance and aviation safety. A total of 60 bird species was found and their risks were assessed by a birdstrike ranking assessment system. The highest-risk species were Barn swallow (Hirundo rustica), Red-rumped swallow (H. daurica), Grey-headed lapwing (Vanellus cinereus), Pintail snipe (Gallinago stenura), Oriental skylark (Alauda gulgula), Little egret (Egretta garzetta), and Eurasian woodcock (Scolopax rusticola), whereas the lowest-risk species were Black-capped kingfisher (Halcyon pileata) and White-throated kingfisher (H. smyrnensis). Through a hierarchical cluster analysis, all species were classified as four groups: (1) the extremely high-risk group with a risk level between 84% and 100%, which includes bird species ranked from the 1st to the 16th, and is the priori group in birdstrike prevention; (2) the high-risk group with a risk level between 71% and 81%, which includes bird species ranked from the 17th to the 28th, and is the sub-prior group in birdstrikes; (3) the sub-high-risk group with a risk level between 60% and 69%, which includes bird species ranked from the 29th to the 43rd, and is the concern group in birdstrike prevention; (4) the low-risk group with a risk level between 60% and 69%, which includes bird species ranked from the 44th to the 60th, and is the negligible group in birdstrike prevention. Finally, the first 16 bird species with high-risk values, which are the main focus of birdstrike prevention, were categorized as six prevention groups by a hierarchical cluster analysis. Therefore, this study provides targeted implementations for birdstrike prevention at Huanghua International Airport, Changsha.  相似文献   

4.
Airports are peculiar developed habitats that, besides being extremely noisy and unappealing to some bird species, are highly attractive to others. Bird–aircraft collisions, or birdstrikes, cause losses in terms of human lives, direct monetary losses and associated costs for the civil aviation industry. In recent years, birdstrike risk assessment studies have focused on the economical aspects of the damage caused by wild animals and the hazards of wildlife–aircraft collisions, while an ecological approach, taking into account animal behaviour for the analysis of such events, has seldom been adopted. We conducted a risk analysis for birdstrikes at the Venice Marco Polo International Airport (VCE), Italy. We defined the key variables involved in these events and summarised their interactions in a single metric risk index we called the “Birdstrike Risk Index” (BRI). Our aim was to provide a tool for birdstrike risk analysis that described the risk on the basis of the actual presence of birds at airports. The application of the BRI at VCE allows relative risks across species to be defined, providing information for prioritising management actions. Furthermore, due to the seasonality of bird species presences, the application of the BRI to a long-term data series should give clues of birdstrike risk in future scenarios. This new ecological approach that we applied to a particular airport could easily be adapted for use at other airports worldwide and integrated into risk assessment procedures. The study results and the BRI tool are addressed to scientific consultants of airport safety managers.  相似文献   

5.
DNA barcoding Korean birds   总被引:6,自引:0,他引:6  
Yoo HS  Eah JY  Kim JS  Kim YJ  Min MS  Paek WK  Lee H  Kim CB 《Molecules and cells》2006,22(3):323-327
DNA barcoding, an inventory of DNA sequences from a standardized genomic region, provides a bio-barcode for identifying and discovering species. Several recent studies suggest that the sequence diversity in a 648 bp region of the mitochondrial gene for cytochrome c oxi- dase I (COI) might serve as a DNA barcode for identify- ing animal species such as North American birds, in- sects and fishes. The present study tested the effective- ness of a COI barcode in discriminating Korean bird species. We determined the 5' terminus of the COI bar- code for 92 species of Korean birds and found that spe- cies identification was unambiguous; the genetic differ- ences between closely related species were, on average, 25 times higher than the differences within species. We identified only one misidentified species out of 239 specimens in a genetic resource bank, so confirming the accuracy of species identification in the banking system. We also identified two potential composite species, calling for further investigation using more samples. The finding of large COI sequence differences between species confirms the effectiveness of COI barcodes for identifying Korean bird species. To bring greater reliability to the identification of species, increased in- tra- and interspecies sampling, as well as supplementa- tion of the mitochondrial barcodes with nuclear ones, is needed.  相似文献   

6.
Abstract.  The utility of cytochrome oxidase I (COI) DNA barcodes for the identification of nine species of forensically important blowflies of the genus Chrysomya (Diptera: Calliphoridae), from Australia, was tested. A 658-bp fragment of the COI gene was sequenced from 56 specimens, representing all nine Chrysomya species and three calliphorid outgroups. Nucleotide sequence divergences were calculated using the Kimura-two-parameter distance model and a neighbour-joining (NJ) analysis was performed to provide a graphic display of the patterns of divergence among the species. All species were resolved as reciprocally monophyletic on the NJ tree. Mean intraspecific and interspecific sequence divergences were 0.097% (range 0–0.612%, standard error [SE] = 0.119%) and 6.499% (range 0.458–9.254%, SE = 1.864%), respectively. In one case, a specimen that was identified morphologically was recovered with its sister species on the NJ tree. The hybrid status of this specimen was established by sequence analysis of the second ribosomal internal transcribed spacer (ITS2). In another instance, this nuclear region was used to verify four cases of specimen misidentification that had been highlighted by the COI analysis. The COI barcode sequence was found to be suitable for the identification of Chrysomya species from the east coast of Australia.  相似文献   

7.
With 400 K described species, beetles (Insecta: Coleoptera) represent the most diverse order in the animal kingdom. Although the study of their diversity currently represents a major challenge, DNA barcodes may provide a functional, standardized tool for their identification. To evaluate this possibility, we performed the first comprehensive test of the effectiveness of DNA barcodes as a tool for beetle identification by sequencing the COI barcode region from 1872 North European species. We examined intraspecific divergences, identification success and the effects of sample size on variation observed within and between species. A high proportion (98.3%) of these species possessed distinctive barcode sequence arrays. Moreover, the sequence divergences between nearest neighbor species were considerably higher than those reported for the only other insect order, Lepidoptera, which has seen intensive analysis (11.99% vs up to 5.80% mean NN divergence). Although maximum intraspecific divergence increased and average divergence between nearest neighbors decreased with increasing sampling effort, these trends rarely hampered identification by DNA barcodes due to deep sequence divergences between most species. The Barcode Index Number system in BOLD coincided strongly with known species boundaries with perfect matches between species and BINs in 92.1% of all cases. In addition, DNA barcode analysis revealed the likely occurrence of about 20 overlooked species. The current results indicate that DNA barcodes distinguish species of beetles remarkably well, establishing their potential to provide an effective identification tool for this order and to accelerate the discovery of new beetle species.  相似文献   

8.
The mitochondrial cytochrome c oxidase subunit I (COI) can serve as a fast and accurate marker for the identification of animal species, and has been applied in a number of studies on birds. We here sequenced the COI gene for 387 individuals of 147 species of birds from the Netherlands, with 83 species being represented by > 2 sequences. The Netherlands occupies a small geographic area and 95% of all samples were collected within a 50 km radius from one another. The intraspecific divergences averaged 0.29% among this assemblage, but most values were lower; the interspecific divergences averaged 9.54%. In all, 95% of species were represented by a unique barcode, with 6 species of gulls and skua (Larus and Stercorarius) having at least one shared barcode. This is best explained by these species representing recent radiations with ongoing hybridization. In contrast, one species, the Lesser Whitethroat Sylvia curruca showed deep divergences, averaging 5.76% and up to 8.68% between individuals. These possibly represent two distinct taxa, S. curruca and S. blythi, both clearly separated in a haplotype network analysis. Our study adds to a growing body of DNA barcodes that have become available for birds, and shows that a DNA barcoding approach enables to identify known Dutch bird species with a very high resolution. In addition some species were flagged up for further detailed taxonomic investigation, illustrating that even in ornithologically well-known areas such as the Netherlands, more is to be learned about the birds that are present.  相似文献   

9.
Birds are a taxonomically well-described group of animals, yet DNA barcoding, i.e., the molecular characterization of species using a standardized genetic marker, has revealed unexpected patterns of genetic divergences among North American birds. We performed a comprehensive COI (cytochrome c oxidase subunit I) barcode survey of 296 species of Scandinavian birds, and compared genetic divergences among 78 trans-Atlantic species whose breeding ranges include both Scandinavia and North America. Ninety-four percent of the Scandinavian species showed unique barcode clusters; the remaining 6% had overlapping barcodes with one or more congeneric species, which may reflect incomplete lineage sorting or a single gene pool. Four species showed large intra-specific divergences within Scandinavia, despite no apparent morphological differentiation or indications of reproductive isolation. These cases may reflect admixture of previously isolated lineages, and may thus warrant more comprehensive phylogeographic analyses. Nineteen (24%) of 78 trans-Atlantic species exhibited divergent genetic clusters which correspond with regional subspecies. Three of these trans-Atlantic divergences were paraphyletic. Our study demonstrates the effectiveness of COI barcodes for identifying Scandinavian birds and highlights taxa for taxonomic review. The standardized DNA barcoding approach amplified the power of our regional studies by enabling independently obtained datasets to be merged with the established avian barcode library.  相似文献   

10.
唐秀娟  姜立云  陈静  乔格侠 《昆虫学报》2015,58(11):1262-1272
【目的】粉毛蚜亚科昆虫是重要的林业害虫,但是由于蚜虫体型较小,形态特征趋于简化,可用于物种鉴定的有效特征非常有限,因此一般基于外部形态特征难以对蚜虫物种实现快速准确的鉴定。本研究获取该亚科2属10种的DNA条形码标准序列,解决部分物种的分类问题,同时比较了3种标记对粉毛蚜亚科(Pterocommatinae)物种快速鉴定的效率。【方法】基于蚜虫的线粒体细胞色素氧化酶C亚基I(cytochrome oxidase subunit I, COI)基因、细胞色素b(cytochrome b, Cytb)基因和蚜虫初级内共生菌Buchnera 6-磷酸葡萄糖酸脱氢酶(gluconate-6-phosphate dehydrogenase, gnd)基因,对2属10种共197号样品进行NJ分析、遗传距离的计算以及基于相似性的物种鉴定分析。【结果】与K-2P模型相比,基于p-distance模型计算得到的遗传距离更小,序列差异频次图上种内距离与种间距离的重叠区域也小于前者;COI序列的物种鉴定成功率最高。获取了粉毛蚜亚科近200条DNA条形码标准序列,并建立了基于3个标记的该亚科物种DNA条形码序列库。【结论】在粉毛蚜亚科DNA条形码研究中,p-distance模型要优于K-2P模型;COI序列具有最高的条形码分析效率;增毛卷粉毛蚜Plocamaphis assetacea可能为蜡卷粉毛蚜Plocamaphis flocculosa的同物异名。  相似文献   

11.
机场周边区域鸟类的活动给飞行安全造成了潜在的风险,掌握机场鸟类的多样性特征对开展鸟击防控工作有重要的指示意义。于2018年10月—2019年8月,采用样线法与网捕法对太原武宿国际机场飞行区与净空区进行了鸟类多样性调查。共记录到鸟类75种,隶属于13目31科,其中繁殖鸟占60%,非繁殖鸟占40%。用EstimateS软件对调查范围内鸟类丰富度进行估计,ACE值(81种),ICE值(98种),表明覆盖了调查范围内鸟类中76.53%~92.59%的物种,显示了较好的调查效果。为了明确所调查鸟类对鸟击防控工作的影响,根据这些鸟种的重要值(IV)与风险系数计算其危险指数。机场全年发生严重危险的鸟种有斑嘴鸭(Anas zonorhyncha)、家燕(Hirundo rustica)、绿头鸭(Anas platyrhynchos)、喜鹊(Pica pica)、环颈雉(Phasianus colchicus)、家鸽(Columba domestica)、珠颈斑鸠(Streptopelia chinensis)等10种。6种不同生境的鸟类群落多样性聚类分析表明:受人为干扰较大的生境类型为居民点和道路绿化...  相似文献   

12.
DNA barcoding involves the use of one or more short, standardized DNA fragments for the rapid identification of species. A 648‐bp segment near the 5′ terminus of the mitochondrial cytochrome c oxidase subunit I (COI) gene has been adopted as the universal DNA barcode for members of the animal kingdom, but its utility in mushrooms is complicated by the frequent occurrence of large introns. As a consequence, ITS has been adopted as the standard DNA barcode marker for mushrooms despite several shortcomings. This study employed newly designed primers coupled with cDNA analysis to examine COI sequence diversity in six species of Pleurotus and compared these results with those for ITS. The ability of the COI gene to discriminate six species of Pleurotus, the commonly cultivated oyster mushroom, was examined by analysis of cDNA. The amplification success, sequence variation within and among species, and the ability to design effective primers was tested. We compared ITS sequences to their COI cDNA counterparts for all isolates. ITS discriminated between all six species, but some sequence results were uninterpretable, because of length variation among ITS copies. By comparison, a complete COI sequences were recovered from all but three individuals of Pleurotus giganteus where only the 5′ region was obtained. The COI sequences permitted the resolution of all species when partial data was excluded for P. giganteus. Our results suggest that COI can be a useful barcode marker for mushrooms when cDNA analysis is adopted, permitting identifications in cases where ITS cannot be recovered or where it offers higher resolution when fresh tissue is. The suitability of this approach remains to be confirmed for other mushrooms.  相似文献   

13.
Colombia is the country with the largest number of bird species worldwide, yet its avifauna is seriously threatened by habitat degradation and poaching. We built a DNA barcode library of nearly half of the bird species listed in the CITES appendices for Colombia, thereby constructing a species identification reference that will help in global efforts for controlling illegal species trade. We obtained the COI barcode sequence of 151 species based on 281 samples, representing 46% of CITES bird species registered for Colombia. The species analysed belong to nine families, where Trochilidae and Psittacidae are the most abundant ones. We sequenced for the first time the DNA barcode of 47 species, mainly hummingbirds endemic of the Northern Andes region. We found a correct match between morphological and genetic identification for 86–92% of the species analysed, depending on the cluster analysis performed (BIN, ABGD and TaxonDNA). Additionally, we identified eleven cases of high intraspecific divergence based on K2P genetic distances (up to 14.61%) that could reflect cryptic diversity. In these cases, the specimens were collected in geographically distant sites such as different mountain systems, opposite flanks of the mountain or different elevations. Likewise, we found two cases of possible hybridization and incomplete lineage sorting. This survey constitutes the first attempt to build the DNA barcode library of endangered bird species in Colombia establishing as a reference for management programs of illegal species trade, and providing major insights of phylogeographic structure that can guide future taxonomic research.  相似文献   

14.

Background

Molluscs are the most diverse marine phylum and this high diversity has resulted in considerable taxonomic problems. Because the number of species in Canadian oceans remains uncertain, there is a need to incorporate molecular methods into species identifications. A 648 base pair segment of the cytochrome c oxidase subunit I gene has proven useful for the identification and discovery of species in many animal lineages. While the utility of DNA barcoding in molluscs has been demonstrated in other studies, this is the first effort to construct a DNA barcode registry for marine molluscs across such a large geographic area.

Methodology/Principal Findings

This study examines patterns of DNA barcode variation in 227 species of Canadian marine molluscs. Intraspecific sequence divergences ranged from 0–26.4% and a barcode gap existed for most taxa. Eleven cases of relatively deep (>2%) intraspecific divergence were detected, suggesting the possible presence of overlooked species. Structural variation was detected in COI with indels found in 37 species, mostly bivalves. Some indels were present in divergent lineages, primarily in the region of the first external loop, suggesting certain areas are hotspots for change. Lastly, mean GC content varied substantially among orders (24.5%–46.5%), and showed a significant positive correlation with nearest neighbour distances.

Conclusions/Significance

DNA barcoding is an effective tool for the identification of Canadian marine molluscs and for revealing possible cases of overlooked species. Some species with deep intraspecific divergence showed a biogeographic partition between lineages on the Atlantic, Arctic and Pacific coasts, suggesting the role of Pleistocene glaciations in the subdivision of their populations. Indels were prevalent in the barcode region of the COI gene in bivalves and gastropods. This study highlights the efficacy of DNA barcoding for providing insights into sequence variation across a broad taxonomic group on a large geographic scale.  相似文献   

15.
ITS作为粒毛盘菌属DNA条形码的探索   总被引:1,自引:1,他引:0  
赵鹏  庄文颖 《菌物学报》2011,30(6):932-937
以种内与种间差异以及PCR扩增和测序成功率为评价DNA条形码的重要指标,探索ITS序列作为粒毛盘菌属DNA条形码的可行性。结果表明,ITS成功区分了研究涉及的22个种,其PCR扩增和测序成功率为100%,该片段有望成为该属区分物种的DNA条形码。  相似文献   

16.
Anthropogenic impacts are an increasing threat to the diversity of fishes, especially in areas around large urban centres, and many effective conservation actions depend on accurate species identification. Considering the utility of DNA barcoding as a global system for species identification and discovery, this study aims to assemble a DNA barcode reference sequence library for marine fishes from the coastal region of São Paulo State, Brazil. The standard 652 bp ‘barcode’ fragment of the cytochrome c oxidase subunit I (COI) gene was PCR amplified and bidirectionally sequenced from 678 individuals belonging to 135 species. A neighbour‐joining analysis revealed that this approach can unambiguously discriminate 97% of the species surveyed. Most species exhibited low intraspecific genetic distances (0.31%), about 43‐fold less than the distance among species within a genus. Four species showed higher intraspecific divergences ranging from 2.2% to 7.6%, suggesting overlooked diversity. Notably, just one species‐pair exhibited barcode divergences of <1%. This library is a first step to better know the molecular diversity of marine fish species from São Paulo, providing a basis for further studies of this fauna – extending the ability to identify these species from all life stages and even fragmentary remains, setting the stage for a better understanding of interactions among species, calibrating the estimations about species composition and richness in an ecosystem, and providing tools for authenticating bioproducts and monitoring illegal species exploitation.  相似文献   

17.
Sixty‐one Hawaiian algal specimens corresponding to members of the tribe Amansieae (Amansia and Osmundaria) were compared through DNA sequence analysis. Short DNA barcode‐like sequences of mitochondrial cytochrome c oxidase subunit I (COI) and universal plastid amplicon (UPA) markers were obtained for as many of the specimens as possible, and a subset of specimens was also used for amplification and sequencing of the nuclear small‐subunit rRNA (SSU) gene for phylogenetic inference in a broader taxonomic context. Statistical parsimony analysis of the COI and UPA markers for A. glomerata produced relationships among the samples that were largely congruent with each other, although the UPA marker was more conserved. The COI marker yielded three lineages, and nucleotide divergences for these three lineages were intermediate to those typically reported for intraspecific and interspecific comparisons, suggesting that they represent either incipient species or a complex of closely related species. The COI and UPA sequences demonstrated little to no divergence for Osmundaria obtusiloba and the taxon referred to as Amansia fimbrifolia. In contrast, specimens identified as A. daemelii were identical in sequence to lineage 3 sequences of A. glomerata, and it is recommended that this taxon no longer be included in species lists for the Hawaiian flora. Phylogenetic reconstruction based on the SSU gene was largely unresolved, indicating that this marker may be of limited utility for this purpose in this group of algae, but a small amount of nucleotide variation was found for samples of A. glomerata.  相似文献   

18.
DNA barcoding has become a useful system for linking different biological life stages, and for identification of species within a known taxonomic framework. In this study, we generated mitochondrial DNA COI barcodes using adult specimens of all 22 species of the hoverfly genus Merodon (Diptera, Syrphidae) occurring on Lesvos island (Greece). The generated COI barcodes could well discriminate between all Merodon taxa of Lesvos, except for M. loewi and M. papillus that shared the same haplotype, despite their clear morphological differences. In addition, the barcodes revealed two cases of hitherto unknown morphologically cryptic species close to M. avidus and M. nigritarsis, respectively. Because only few successful rearings of immature stages of Merodon hoverflies are available, the larval host plant remains unknown for these phytophagous taxa. The obtained COI barcode library for the Merodon spp. of Lesvos will constitute a tool to link any unknown immature stages with already known species, and thus provide important life-history information and promise for ecological studies.  相似文献   

19.
Although thrips are globally important crop pests and vectors of viral disease, species identifications are difficult because of their small size and inconspicuous morphological differences. Sequence variation in the mitochondrial COI-5ʹ (DNA barcode) region has proven effective for the identification of species in many groups of insect pests. We analyzed barcode sequence variation among 471 thrips from various plant hosts in north-central Pakistan. The Barcode Index Number (BIN) system assigned these sequences to 55 BINs, while the Automatic Barcode Gap Discovery detected 56 partitions, a count that coincided with the number of monophyletic lineages recognized by Neighbor-Joining analysis and Bayesian inference. Congeneric species showed an average of 19% sequence divergence (range = 5.6% - 27%) at COI, while intraspecific distances averaged 0.6% (range = 0.0% - 7.6%). BIN analysis suggested that all intraspecific divergence >3.0% actually involved a species complex. In fact, sequences for three major pest species (Haplothrips reuteri, Thrips palmi, Thrips tabaci), and one predatory thrips (Aeolothrips intermedius) showed deep intraspecific divergences, providing evidence that each is a cryptic species complex. The study compiles the first barcode reference library for the thrips of Pakistan, and examines global haplotype diversity in four important pest thrips.  相似文献   

20.
Zou S  Li Q  Kong L  Yu H  Zheng X 《PloS one》2011,6(10):e26619

Background

DNA barcoding has recently been proposed as a promising tool for the rapid species identification in a wide range of animal taxa. Two broad methods (distance and monophyly-based methods) have been used. One method is based on degree of DNA sequence variation within and between species while another method requires the recovery of species as discrete clades (monophyly) on a phylogenetic tree. Nevertheless, some issues complicate the use of both methods. A recently applied new technique, the character-based DNA barcode method, however, characterizes species through a unique combination of diagnostic characters.

Methodology/Principal Findings

Here we analyzed 108 COI and 102 16S rDNA sequences of 40 species of Neogastropoda from a wide phylogenetic range to assess the performance of distance, monophyly and character-based methods of DNA barcoding. The distance-based method for both COI and 16S rDNA genes performed poorly in terms of species identification. Obvious overlap between intraspecific and interspecific divergences for both genes was found. The “10× rule” threshold resulted in lumping about half of distinct species for both genes. The neighbour-joining phylogenetic tree of COI could distinguish all species studied. However, the 16S rDNA tree could not distinguish some closely related species. In contrast, the character-based barcode method for both genes successfully identified 100% of the neogastropod species included, and performed well in discriminating neogastropod genera.

Conclusions/Significance

This present study demonstrates the effectiveness of the character-based barcoding method for species identification in different taxonomic levels, especially for discriminating the closely related species. While distance and monophyly-based methods commonly use COI as the ideal gene for barcoding, the character-based approach can perform well for species identification using relatively conserved gene markers (e.g., 16S rDNA in this study). Nevertheless, distance and monophyly-based methods, especially the monophyly-based method, can still be used to flag species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号