首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Bos DH  DeWoody JA 《Immunogenetics》2005,57(10):775-781
Major histocompatibility complex (MHC) class II genes are usually among the most polymorphic in vertebrate genomes because of their critical role (antigen presentation) in immune response. Prior to this study, the MHC was poorly characterized in tiger salamanders (Ambystoma tigrinum), but the congeneric axolotl (Ambystoma mexicanum) is thought to have an unusual MHC. Most notably, axolotl class II genes lack allelic variation and possess a splice variant without a full peptide binding region (PBR). The axolotl is considered immunodeficient, but it is unclear how or to what extent MHC genetics and immunodeficiency are interrelated. To study the evolution of MHC genes in urodele amphibians, we describe for the first time an expressed polymorphic class II gene in wild tiger salamanders. We sequenced the PBR of a class II gene from wild A. tigrinum (n=33) and identified nine distinct alleles. Observed heterozygosity was 73%, and there were a total of 46 polymorphic sites, most of which correspond to amino acid positions that bind peptides. Patterns of nucleotide substitutions exhibit the signature of diversifying selection, but no recombination was detected. Not surprisingly, transspecies evolution of tiger salamander and axolotl class II alleles was apparent. We have no direct data on the immunodeficiency of tiger salamanders, but the levels of polymorphism in our study population should suffice to bind a variety of foreign peptides (unlike axolotls). Our tiger salamander data suggest that the monomorphism and immunodeficiencies associated with axolotl class II genes is a relict of their unique historical demography, not their phylogenetic legacy. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

2.
The subarcualis rectus I muscle (SAR) in the feeding mechanism of four tiger salamanders (Ambystoma tigrinum) was removed early in ontogeny and these individuals were allowed to complete metamorphosis. This procedure resulted in postmetamorphic tiger salamanders which differed from control individuals in the size (and thus force generating capacity) of the SAR muscle. The experimental manipulation of muscle ontogeny allowed a test of previous hypotheses of SAR function in postmetamorphic individuals. Multivariate analysis of variance for kinematic variables measured from high-speed video records of feeding revealed that experimentally modified tiger salamanders did not protract the hyobranchial apparatus or project the tongue from the mouth during feeding. Removal of the SAR muscle resulted in significantly reduced hyobranchial elevation in the buccal cavity and reduced maximum tongue projection distance.  相似文献   

3.
While ontogenetic analyses of skull development have contributed to our understanding of phylogenetic patterns in vertebrates, there are few studies of taxa that undergo a relatively discrete and rapid change in morphology during development (metamorphosis). Morphological changes occurring in the head at metamorphosis in tiger salamanders (Ambystoma tigrinum) were quantified by a morphometric analysis of cranial osteology and myology to document patterns of change during metamorphosis. We employed a cross-sectional analysis using a sample of larvae just prior to metamorphosis and a sample of transformed individuals just after metamorphosis, as well as larvae undergoing metamorphosis. There were no differences in external size of the head among the larval and transformed samples. The hyobranchial apparatus showed many dramatic changes at metamorphosis, including shortening of ceratobranchial 1 and the basibranchial. The subarcualis rectus muscle increased greatly in length at metamorphosis, as did hypobranchial length and internasal distance. A truss analysis of dorsal skull shape showed that at metamorphosis the snout becomes wider, the maxillary and squamosal triangles rotate posteromedially, and the neurocranium shortens (while maintaining its width), resulting in an overall decrease in skull length at metamorphosis. These morphometric differences are interpreted in light of recent data on the functional morphology of feeding in salamanders. Morphological reorganization of the hyobranchial apparatus and shape changes in the skull are related to the acquisition of a novel terrestrial feeding mode (tongue projection) at metamorphosis. Metamorphic changes (both internal and external) that can be used to judge metamorphic condition are discussed.  相似文献   

4.
 Unlike most salamanders, the Mexican axolotl (Ambystoma mexicanum) fails to produce enough thyroxin to undergo anatomical metamorphosis, although a “cryptic metamorphosis” involving a change from fetal to adult hemoglobins has been described. To understand to what extent the development of the axolotl hemopoietic system is linked to anatomical metamorphosis, we examined the appearance and thyroxin dependence of class II molecules on thymus, blood, and spleen cells, using both flow cytometry and biosynthetic labeling followed by immunoprecipitation. Class II molecules are present on B cells as early as 7 weeks after hatching, the first time analyzed. At this time, most thymocytes, all T cells, and all erythrocytes lack class II molecules, but first thymocytes at 17 weeks, then T cells at 22 weeks, and finally erythrocytes at 26–27 weeks virtually all bear class II molecules. Class II molecules and adult hemoglobin appear at roughly the same time in erythrocytes. These data are most easily explained by populations of class II-negative cells being replaced by populations of class II-positive cells, and they show that the hemopoietic system matures at a variety of times unrelated to the increase of thyroxin that drives anatomical metamorphosis. We found that administration of thyroxin during axolotl ontogeny does not accelerate or otherwise affect the acquisition of class II molecules, nor does administration of drugs that inhibit thyroxin (sodium perchlorate, thiourea, methimazole, and 1-methyl imidazole) retard or abolish this acquisition, suggesting that the programs for anatomical metamorphosis and some aspects of hemopoietic development are entirely separate. Received: 15 July 1997 / Revised: 28 October 1997  相似文献   

5.
Since thyroid hormones play a pivotal role in amphibian metamorphosis we used PCR to amplify DNA fragments corresponding to a portion of the ligand-binding domain of the thyroid hormone receptor (TR) genes in several neotenic amphibians: the obligatory neotenic members of the family Proteidea the mudpuppy Necturus maculosus and Proteus anguinus as well as two members of the facultative neotenic Ambystoma genus: the axolotl Ambystoma mexicanum and the tiger salamander Ambystoma tigrinum. In addition, we looked for TR genes in the genome of an apode Typhlonectes compressicaudus. TR genes were found in all these species including the obligatory neotenic ones. The PCR fragments obtained encompass both the C and E domains and correspond to α and β genes. Their sequences appear to be normal, suggesting that there is no acceleration of evolutionary rates in the TR genes of neotenic amphibians. This result is not surprising for Ambystomatidae, which are known to respond to T3 (3,3′,5-triiodothyronine) but is not in agreement with biochemical and biological data showing that Proteidea cannot respond to thyroid hormones. Interestingly, by RT-PCR analysis we observed a high expression levels of TRα in gills, intestine, and muscles of Necturus as well as in the liver of Ambystoma mexicanum, whereas TRβ expression was only detected in Ambystoma mexicanum but not in Necturus. Such a differential expression pattern of TRα and TRβ may explain the neoteny in Proteidea. The cloning of thyroid-hormone-receptor gene fragments from these species will allow the molecular study of their failure to undergo metamorphosis. Received: 23 April 1996 / Accepted: 20 January 1997  相似文献   

6.

Background  

Three kidney systems appear during vertebrate development: the pronephroi, mesonephroi and metanephroi. The pronephric duct is the first or primary ureter of these kidney systems. Its role as a key player in the induction of nephrogenic mesenchyme is well established. Here we investigate whether the duct is involved in urine modification using larvae of the freshwater amphibian Ambystoma mexicanum (axolotl) as model.  相似文献   

7.
Summary Electro-olfactograms (EOGs) were used to assess olfactory responding by aquatic larval and terrestrial adult tiger salamanders (Ambystoma tigrinum) to airborne volatile compounds, and volatile and non-volatile compounds in aqueous solution. Both forms of salamander showed saturation effects to presentations of airborne stimuli (Fig. 2). Saturation was not observed, however, to stimulus presentations in aqueous solution (Figs. 2, 3). When threshold values and concentration-response curve parameters were compared, non-volatile amino acids in solution were more potent stimuli for larvae while airborne volatiles were more potent stimuli for adults (Tables 1, 2). We infer that metamorphosis in the tiger salamander is accompanied by changes in olfactory response characteristics, due possibly to changes in receptor population, changes in perireceptor properties (e.g. mucus) or to changes in stimulus access.Abbreviations EOG electro-olfactogram - PPM (ppm) parts per million  相似文献   

8.

Background  

The ambystomatid salamander, Ambystoma mexicanum (axolotl), is an important model organism in evolutionary and regeneration research but relatively little sequence information has so far been available. This is a major limitation for molecular studies on caudate development, regeneration and evolution. To address this lack of sequence information we have generated an expressed sequence tag (EST) database for A. mexicanum.  相似文献   

9.
The transformation of ancestral phenotypes into novel traits is poorly understood for many examples of evolutionary novelty. Ancestrally, salamanders have a biphasic life cycle with an aquatic larval stage, a brief and pronounced metamorphosis, followed by a terrestrial adult stage. Repeatedly during evolution, metamorphic timing has been delayed to exploit growth-permissive environments, resulting in paedomorphic salamanders that retain larval traits as adults. We used thyroid hormone (TH) to rescue metamorphic phenotypes in paedomorphic salamanders and then identified quantitative trait loci (QTL) for life history traits that are associated with amphibian life cycle evolution: metamorphic timing and adult body size. We demonstrate that paedomorphic tiger salamanders (Ambystoma tigrinum complex) carry alleles at three moderate effect QTL (met1–3) that vary in responsiveness to TH and additively affect metamorphic timing. Salamanders that delay metamorphosis attain significantly larger body sizes as adults and met2 explains a significant portion of this variation. Thus, substitution of alleles at TH-responsive loci suggests an adaptive pleiotropic basis for two key life-history traits in amphibians: body size and metamorphic timing. Our study demonstrates a likely pathway for the evolution of novel paedomorphic species from metamorphic ancestors via selection of TH-response alleles that delay metamorphic timing and increase adult body size.  相似文献   

10.
SYNOPSIS. Neoteny in the Mexican axolotl, Ambystoma mexicanum,is caused by homozygosity for a single recessive gene. The dominantallele causing physical metamorphosis is found in the closelyrelated species, Ambystoma tigrinum, with which it can hybridize.Despite the failure of axolotls to undergo physical metamorphosis,they do undergo a cryptic metamorphosis. A larval-to-adult hemoglobinform change, serum protein changes and other physiological eventsusually associated with amphibian metamorphosis occur duringearly larval life at ages comparable to the age at which Ambystomatigrinum undergoes both the cryptic and external metamorphicevents. Axolotl cryptic metamorphosis can be induced precociouslyby immersion of the larvae in low concentrations of thyroxine;physical metamorphosis can be induced with higher thyroxineconcentrations. The site of action of the gene responsible foraxolotl neoteny has not been identified. A change in the sensitivityof external metamorphic processes to thyroxine, or reduced hormonalstimulation by the pituitary or hypothalamus may be responsible.A comparison of these functions in Ambystoma tigrinum and theaxolotl may identify the lesion.  相似文献   

11.
Recently transformed adult tiger salamanders (Ambystoma tigrinum) that had never resided on land were treated with increasing, alternate-day injections of thyroxine (experiment 1) or single injections of particular dosages of this hormone (experiment 2). In all cases control salamanders received equivalent volumes of saline on a similar schedule. In both experiments, subjects treated with thyroxine displayed significant levels of terrestrial-substrate preference in a moisture-gradient apparatus. Salinetreated controls never emerged from the water. In experiment 2, animals that received single thyroxine treatments also displayed heightened levels of land-directed locomotor activity. In experiment 3, blood plasma was collected from salamanders displaying spontaneous land preference and others displaying water preference. Radioimmunoassay for thyroxine indicated that salamanders that had moved to, and resided upon, a terrestrial substrate some time subsequent to metamorphosis had significantly higher plasma levels of this hormone than did animals preferring to remain submerged. These results indicate (1) that thyroxine stimulates, and possibly maintains, emergence from water and terrestrial preference in newly transformed tiger salamanders and (2) that this hormone stimulates a locomotor activity component associated with the movement of formerly aquatic adults to the terrestrial habitat.  相似文献   

12.
Most previous research on metamorphosis of the musculoskeletal system in vertebrates has focused on the transformation of the skeleton. In this paper we focus on the transformation of the muscles of the head during metamorphosis in tiger salamanders ( Ambystoma tigrinum ) in order (1) to provide new data on changes in myology during ontogeny, and (2) to aid in interpreting previous data on the metamorphosis of function in the head of salamanders.
The physiological cross-sectional area of nine head muscles was calculated by measuring fibre angles, fibre lengths, and muscle mass in two samples of tiger salamanders obtained just before and just after metamorphosis. The major mouth-opening muscles (rectus cervicis and depressor mandibulae) exhibit a significant decrease in estimated maximum tetanic tension (MTT) across metamorphosis of about 36%. The jaw-closing muscles (adductor mandibulae internus and externus) and the head-lifting muscles (epaxials) also decrease in MTT but not significantly. The muscles associated with tongue projection during feeding on land (the subarcualis rectus I, geniohyoideus, interhyoideus and intermandibularis) all show a slight increase in MTT at metamorphosis.
Metamorphic transformation of feeding behaviour in Ambystoma tigrinum involves changes in performance, the design of skeletal elements, changes in muscle force-generating capability, and changes in hydrodynamic design from unidirectional flow in larvae to bidirectional flow during aquatic feeding after metamorphosis. Although muscle activity patterns during aquatic feeding do not change across metamorphosis, tongue-based terrestrial feeding involves a suite of novel muscle activity patterns, morphological characters acquired at metamorphosis, and a metamorphic increase in the masses of muscles important in tongue projection.  相似文献   

13.
Comparison of metamorphosis of skull and hyobranchial system in two species of neotenic salamanders reveals two different types of neoteny. Ambystoma talpoideum is completely neotenic owing to delayed metamorphosis. Notophthalmus viridescens exhibits limited neoteny as a result of incomplete metamorphosis. Morphological details of neoteny are compared to life history in both species in order to discuss the ecological morphology of the two neotenic strategies. Comparisons to Taricha granulosa, Triturus vulgaris, and Ambystoma gracile indicate that these two strategies are widely employed and may represent familial patterns.  相似文献   

14.
Although the axolotl Ambystoma mexicanum is anatomically a larval amphibian, it does produce a small amount of endogenous thyroxine. According to the theory that different tissues have different thresholds of response to thyroxine, the axolotl may undergo certain biochemical metamorphic events without anatomical metamorphosis.Gel electrophoresis demonstrated that the hemoglobin and serum protein composition of the blood changed at approximately 125 and 210 days of normal development, respectively. Both events were prematurely inducible by thyroxine; metamorphosed animals had neotenous adult hemoglobin and serum protein electrophoretic patterns.On sodium dodecyl sulfate-polyacrylamide gels, denatured neotenous adult hemoglobin fractionated into components of 15,000 and 19,000, and 24,500 molecular weight (relative to that of bovine hemoglobin monomer, 15,500). Larval hemoglobin possessed components of 13,800 and 19,500 molecular weight.It was concluded that (1) at 100–150 days of normal development, the production of new hemoglobin polypeptide subunits was stimulated whereas the synthesis of larval subunits was inhibited, (2) the axolotl is not biochemically neotenous for at least two normally metamorphic events, and (3) the tissues responsible for certain biochemical metamorphic events probably have a lower threshold of response to thyroxine than the tissues responsible for anatomical metamorphosis.  相似文献   

15.
Banding differences between tiger salamander and axolotl chromosomes   总被引:1,自引:0,他引:1  
The Hoechst 33258 - Giemsa banding patterns were compared on axolotl (Ambystoma mexicanum Shaw) and axolotl - tiger salamander (Ambystoma tigrinum Green) species hybrid prophase chromosomes. Approximately 369 bands per haploid chromosome set were seen in the axolotl and about 344 bands in the tiger salamander. In the haploid set of 14 chromosomes, chromosome 3 has a constant short or q-arm terminal constriction at the location of the nucleolar organizer. Chromosomes 14 Z and W carry the sex determinants, the female being the heterogametic sex (ZW). The banding patterns of chromosomes 1, 6, 11, and 14 Z of the two species are apparently indistinguishable by our banding method. In the axolotl, chromosome 9 has a small long or p-arm terminal deletion. In the tiger salamander, the remaining 10 chromosomes have terminal or internal deletions. No translocations or inversions seem to have occurred since the gene pool separation of the two closely related species.  相似文献   

16.

Background  

Introductions of non-native tiger salamanders into the range of California tiger salamanders have provided a rare opportunity to study the early stages of secondary contact and hybridization. We produced first- and second-generation hybrid salamanders in the lab and measured viability among these early-generation hybrid crosses to determine the strength of the initial barrier to gene exchange. We also created contemporary-generation hybrids in the lab and evaluated the extent to which selection has affected fitness over approximately 20 generations of admixture. Additionally, we examined the inheritance of quantitative phenotypic variation to better understand how evolution has progressed since secondary contact.  相似文献   

17.
1. Amphibian populations residing in or near agricultural areas are often susceptible to pesticide contamination. Recent evidence suggests that the effects of pesticides on amphibians often exceed those estimated in laboratory toxicity tests because other environmental factors (e.g. predators, resource abundance) can influence pesticide toxicity. 2. To examine the effects of an insecticide (carbaryl) on two species of Ambystoma salamanders experiencing the natural stress of competition, we manipulated chemical concentration (control, 3.5 and 7.0 mg L?1) and larval density (low and high). We determined the effect of treatments on snout‐vent length (SVL), growth rate, lipid reserves, time to metamorphosis, per cent survival and per cent metamorphosis. 3. Carbaryl negatively affected all response variables of Ambystoma maculatum significantly, and significantly reduced survival and metamorphosis of A. opacum. Increased density significantly influenced SVL, lipid reserves, growth rate and metamorphosis of A. maculatum. 4. The effects of carbaryl and increased density on per cent metamorphosis were nearly additive, but were generally less than additive on other variables. 5. The negative effects of chemical contamination on salamanders were likely because of pesticide‐induced reductions of food resources, as zooplankton abundance decreased by as much as 97% following carbaryl application. 6. Our study demonstrates the importance of the interactive effects that chemical contamination and natural environmental factors have on salamanders.  相似文献   

18.
Currently no comparative studies exist on helminth and leech community structure among sympatric anuran tadpoles and salamander larvae. During June-August 2007-2009, we examined 50 bullfrog tadpoles, Rana catesbeiana , 50 barred tiger salamander larvae, Ambystoma mavortium , and 3 species of snails from Nevens Pond, Keith County, Nebraska for helminth and leech infections. The helminth and leech compound community of this larval amphibian assemblage consisted of at least 7 species, 4 in bullfrog tadpoles and 4 in barred tiger salamander larvae. Bullfrog tadpoles were infected with 2 species of nematodes ( Gyrinicola batrachiensis and Spiroxys sp.) and 2 types of metacercariae ( Telorchis sp. and echinostomatids), whereas barred tiger salamander larva were infected with 1 species of leech ( Placobdella picta ), 2 species of adult trematodes ( Telorchis corti and Halipegus sp.), and 1 species of an unidentified metacercaria. The component community of bullfrog tadpoles was dominated by helminths acquired through active penetration, or incidentally ingested through respiratory currents, or both, whereas the component community of larval salamanders was dominated by helminths acquired through ingestion of intermediate hosts (χ2 = 3,455.00, P < 0.00001). Differences in amphibian larval developmental time (2-3 yr for bullfrog tadpoles versus 2-5 mo for salamander larvae), the ephemeral nature of intermediate hosts in Nevens Pond, and the ability of bullfrog tadpole to eliminate echinostome infections had significant effects on mean helminth species richness among amphibian species and years (t = 12.31, P < 0.0001; t = 2.09, P = 0.04). Differences in herbivorous and carnivorous diet and time to metamorphosis among bullfrog tadpoles and barred tiger salamander larvae were important factors in structuring helminth communities among the larval stages of these 2 sympatric amphibian species, whereas size was important in structuring helminth and leech communities in larval salamanders, but not in bullfrog tadpoles.  相似文献   

19.
Morphological changes of oral cavity during metamorphosis withspecial reference to the taste organ were examined in Ezo salamanders(Hynobius retardatus) and axolotls (Ambystoma mexicanum), andcompared with those in bullfrogs (Rana catesbeiana). The non-distensibletongue of salamanders changed the structure progressively duringmetamorphosis: a small area of the rostrum protruded and developedcaudally with recession of the flat area of the tongue. Theprotrusion that developed on the tongue had numerous papillae,as seen in the frog tongue. The apical region of the papillaeoccasionally had a cell mass similar to the taste disk of frogs(termed a taste disk-like cell mass). On the flat area of thetongue, the barrel-shaped taste buds of larval salamanders weretransformed into taste buds with a wider receptor area. Thebarrel-shaped taste buds decreased progressively during metamorphosis,while taste disk-like cell masses increased. Neuronal labelingwith an antibody to neuron-specific enolase and fluorescentcarbocyanine dye showed that the taste disk-like cell massesin metamorphosed salamanders were innervated by the glossopharyngealnerve (nerve IX). Nerve IX responded to taste stimulation aswell as mechanical stimulation applied to the rostral tongue.During metamorphosis the salamanders undergo transformationand rearrangement of taste organs on the tongue possibly asan adaptation to the terrestrial environment. Chem. Senses 22:535–545, 1997.  相似文献   

20.
Spotted salamanders (Ambystoma maculatum) are pond-breeding amphibians that disperse into terrestrial habitat from natal wetlands after undergoing metamorphosis, relying on small-mammal burrows and coarse woody debris for refugia. The effect of conspecifics on burrow use in juvenile salamanders is poorly understood. Determining how the presence of conspecifics influences the settlement decisions of juvenile salamanders can increase our understanding of amphibian dispersal and our ability to predict population dynamics. We conducted behavioral laboratory trials using 58 recently metamorphosed salamanders to examine how salamanders selected burrows in the presence of conspecifics. Salamanders were more likely to settle in a burrow that was occupied by a conspecific versus an unoccupied burrow. Our results indicate that juvenile salamanders may show conspecific attraction and/or trailing behavior during the dispersal phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号