首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
Abstract: The Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the phosphatase calcineurin (CaN) are especially abundant in the mammalian CNS, where they have been implicated repeatedly in different neuronal functions. CaMKII is a holoenzyme that is likely to be constituted of both homomultimers and heteromultimers, CaMKIIα and CaMKIIβ being the most abundant subunits in the brain. CaN is a heterodimer constituted of a catalytic subunit (CaN A) and a regulatory subunit (CaN B), and CaN Aα is the predominant form in the brain. We studied the expression of CaMKIIα, CaMKIIβ, and CaN Aα subunit messenger RNAs in the mouse hippocampus at different times after the administration of a convulsant dose of kainic acid. CaMKIIα and CaN A immunohistochemistry was also performed. We observed a transient decrease in the three messenger RNAs in the kainic acid-treated mice, peaking at 5 or 24 h of treatment. The effect had disappeared completely 8 days after treatment. No significant alterations in CaMKII or CaN immunolabelling were observed in the hippocampus of kainic acid-treated mice. The observed modifications could be due to the neuronal hyperexcitability induced by kainic acid rather than neuronal degeneration, because no areas of neuronal loss were detected. Our results suggest that the expression of CaMKII and CaN mRNAs is down-regulated in neuronal cells in response to the hyperexcitability induced by kainic acid. The transient nature of the effect and the apparent absence of significant modifications in the amount of their corresponding proteins may be related to the absence of neuronal damage.  相似文献   

2.
Abstract: To examine the role played by free radicals in brain injury, we performed experiments to detect radicals in the frontal cortex of rats, using electron spin resonance (ESR) and microdialysis. A dialysis probe was inserted into the frontal cortex, and spin adducts in perfusates were immediately detected by ESR. We obtained a relatively stable doublet signal, with parameters of g = 2.0057 and aH = 0.17 mT. This signal corresponded with that of the ascorbyl radical. Ascorbyl radical in the perfusate collected from the frontal cortex was augmented by microinjection of H2O2 and FeCl2 adjacent to the dialysis probe. When the rats were challenged with cold-induced brain injury, ascorbyl radical and lactate dehydrogenase (LDH) level in the perfusate increased significantly. Pretreatment with superoxide dismutase and catalase attenuated the increase in ascorbyl radical and LDH level induced by the cold injury. Infusion of FeCl2 dissolved in perfusate caused a pronounced increase in ascorbyl radical and LDH level after the cold injury. We conclude that the direct detection of free radical formation further supports the hypothesis that free radicals play an important role in traumatic brain injury. Our findings also indicate that combined microdialysis with ESR spectroscopy is a useful in vivo method for monitoring free radical production in the brain.  相似文献   

3.
Diazotization of primary aromatic amines with isoamyl nitrite in benzene at room temperature was studied employing EPR and spin trapping techniques. Nitrosodurene (ND). 2-methyl-2-nitrosopropane (MNP). and 5,5-dimethyl-pyrroline N-oxide (DMPO) were used as spin trapping agents. Aryl radicals were detected employing ND and MNP. Using DMPO as a spin trap most of the amines produced EPR spectra ascribed to adducts with aniline-type radicals (N-centred radicals). The assignments were verified using 15JN-labeled anilines. Similar spectra of DMPO adducts were recorded from amines treated with benzoyl peroxide or benzophenone plus UV. Possible mechanisms of formation of these adducts (radical trapping versus nucleophilic addition to DMPO followed by oxidation) during treatment of the amines with isoamyl nitrite are discussed.  相似文献   

4.
《Free radical research》2013,47(1-2):47-56
Diazotization of primary aromatic amines with isoamyl nitrite in benzene at room temperature was studied employing EPR and spin trapping techniques. Nitrosodurene (ND). 2-methyl-2-nitrosopropane (MNP). and 5,5-dimethyl-pyrroline N-oxide (DMPO) were used as spin trapping agents. Aryl radicals were detected employing ND and MNP. Using DMPO as a spin trap most of the amines produced EPR spectra ascribed to adducts with aniline-type radicals (N-centred radicals). The assignments were verified using 15JN-labeled anilines. Similar spectra of DMPO adducts were recorded from amines treated with benzoyl peroxide or benzophenone plus UV. Possible mechanisms of formation of these adducts (radical trapping versus nucleophilic addition to DMPO followed by oxidation) during treatment of the amines with isoamyl nitrite are discussed.  相似文献   

5.
Changes in the intensity of the electron spin resonance signal of divalent manganese were found to occur in suspensions of wild-type Chlamydomonas reinhardi. The observed manganese signal decreased in the light and increased in the dark. Through the use of a continuous-flow system it was possible to determine that the manganous ions responsible for the observed signal were localized solely in the medium. Changes in the signal intensity associated with wild-type cells were independent of the ability of fragments prepared from these cells to perform the Hill reaction with 2,6-dichlorophenol-indophenol (DPIP) as the oxidant.

The manganese signal changes were still evident, though smaller, in cell suspensions of wild-type cells treated with 3-(3,4-dichlorophenyl)-1, 1-dimethylurea, and in mutant strains unable to carry out the Hill reaction, ac-115 and ac-141.

From these data it is concluded that the changes in intensity of the manganese resonance are not related to the function of manganese in photosynthesis but may reflect the capacity of cells for ion uptake in the light.

  相似文献   

6.
By the use of EPR spectroscopy, it has been shown that acyl nitroso compounds can act as spin traps for short-lived radicals with the formation of acyl aminoxyl radicals. The reaction was studied for the system benzohydroxamicacid[Ph-C (= O)N(H)] - dimethyl sulfoxide - hydrogen peroxide. The acyl aminoxyl radicals appeared almost immediately when the reaction mixture was irradiated in situ in the EPR cavity with UV light. The trapping reaction involved two photochemical reactions, i.e. the oxidation of the hydroxamic acid to the acyl nitroso compound Ph-C (= O)NO, and the formation of methyl radicals from dimethyl sulfoxide. The EPR spectra are superpositions of the spectra of two species of acyl aminoxyl radicals, i.e. the radicals Ph-C (= O)N(O·)H formed by oxidation of the parent benzohydrox-amic acid, and the radical Ph-C (= O)N(O·)CH3, formed by trapping of methyl radicals.  相似文献   

7.
Chemical reduction of mitosenes under aerobic conditions in DMSO showed characteristic ESR signals of the mitosene derived semiquinone free radicals. However, these signals diminished strongly upon addition of water to the reaction mixture, indicating a short lifetime of the mitosene semiquinone free radicals under aqueous conditions. In addition, enzymatic one-electron reduction of these mitosenes with either xanthine oxidase or purified NADPH cytochrome P450 reductase under anaerobic conditions showed no signals of the mitosene semiquinone free radicals. Subsequent cyclic voltammetry measurements demonstrated facilitation of the further one-electron reduction of the mitosene semiquinone free radicals in the presence of water in comparison with non-aqueous conditions. The present results strongly suggest that in the presence of water relatively stable hydroquinones are formed upon reduction of mitosenes. Consequently, the steady state concentrations of mitosene semiquinone free radicals will be lowered substantially in aqueous environment. Thus under physiological conditions, two-electron reduction and formation of the mitosene hydroquinone might be important in processes leading to DNA alkylation by these mitosenes.  相似文献   

8.
When germinating Zea mays L. seeds are rapidly desiccated, free radical-mediated lipid peroxidation and phospholipid de-esterification is accompanied by a desiccation-induced buildup of a stable free radical associated with rapid loss of desiccation tolerance. Comparison of the electron paramagnetic resonance and electron nuclear double resonance properties of this radical with those of the radical in dried, desiccation-intolerant moss showed that the two were identical. At the subcellular level, the radical was associated with the hydrophilic fraction resulting from lipid extraction. Isolated mitochondria subjected to drying were also found to accumulate an identical radical in vitro. When increasing concentrations of cyanide were used, a significant positive correlation was shown between rates of respiration and the accumulation of the radical in desiccation-intolerant tissues. Another positive correlation was found when rates of O2 uptake by radicles at different stages of germination were plotted against free radical content following desiccation. This indicates that free radical production is closely linked to respiration in a process likely to involve the desiccation-induced impairment of the mitochondrial electron transport chain to form thermodynamically favorable conditions to induce accumulation of a stable free radical and peroxidized lipids. Modulation of respiration using a range of inhibitors resulted in broadly similar modulation of the buildup of the stable free radical. One site of radical generation was likely to be the NADH dehydrogenase of complex I and probably as a direct consequence of desiccation-impaired electron flow at or close to the ubiquinone pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号