首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Primers for five polymorphic microsatellite loci were developed for the midget faded rattlesnake (Crotalus viridis concolor), a rare subspecies of western rattlesnake (Crotalus viridus) found only in parts of Wyoming, Colorado, and Utah. Five polymorphic microsatellites were isolated, four of which had relatively high levels of diversity (eight to nine alleles). We found only two departures from Hardy–Weinberg equilibrium and they occurred in different loci, so null alleles are likely not a problem. Moreover, we found that no two loci were linked. These loci will be applicable for population genetic analysis and perhaps analysis of paternity and mating systems.  相似文献   

2.
Individuals of many species show high levels of fidelity to natal populations, often due to reliance on patchily distributed habitat features. In many of these species, the negative impacts of inbreeding are mitigated through specialized behaviours such as seasonal mating dispersal. Quantifying population structure for species with these characteristics can potentially elucidate social and environmental factors that interact to affect mating behaviour and population connectivity. In the northern part of their range, timber rattlesnakes are communal hibernators with high natal philopatry. Individuals generally recruit to the same hibernaculum as their mother and remain faithful to that hibernaculum throughout their lives. We examined the genetic structure of Crotalus horridus hibernacula in the northeastern USA using microsatellite loci. Sampled hibernacula exhibited only modest levels of differentiation, indicating a significant level of gene flow among them. We found no significant correlation between genetic differentiation and geographical distance, but did find significant positive correlation between genetic differentiation and a cost-based distance metric adjusted to include the amount of potential basking habitat between hibernacula. Therefore, thermoregulation sites may increase gene flow by increasing the potential for contact among individuals from different populations. Parentage analyses confirmed high levels of philopatry of both sexes to their maternal hibernaculum; however, approximately one-third of paternity assignments involved individuals between hibernacula, confirming that gene flow among hibernacula occurs largely through seasonal male mating dispersal. Our results underscore the importance of integrating individual-level behaviours and landscape features with studies of fine-scale population genetics in species with high fidelity to patchily distributed habitats.  相似文献   

3.
The origin and molecular structure of the midget chromosome that is retained in a common wheat with rye cytoplasm, were studied by using fluorescent in situ hybridization (FISH). FISH with biotinylated rye genomic DNA as a probe clearly showed that the midget chromosome had originated from certain part(s) of rye chromosome(s). The midget chromosome did not possess sequences similar to wheat rDNA nor to a rye telomeric sequence with a 350 bp repeat unit. However, another repetitive sequence (120 bp family) of rye was found to occur at one end of the midget chromosome. The telomeric repeat sequences from Arabidopsis thaliana cross-hybridized to both ends of the midget chromosome as well as to wheat chromosomes. From the results obtained in this and previous studies, it is assumed that the midget chromosome originated from part of a rye chromosome, most likely the centromeric region of chromosome 1R, and that the telomeric sequences were synthesized de novo.by R. Appels  相似文献   

4.
Noccaea caerulescens (Brassicaceae) is a major pseudometallophyte model for the investigation of the genetics and evolution of metal hyperaccumulation in plants. We studied the population genetics and demographic history of this species to advance the understanding of among‐population differences in metal hyperaccumulation and tolerance abilities. Sampling of seven to 30 plants was carried out in 62 sites in Western Europe. Genotyping was carried out using a combination of new chloroplast and nuclear neutral markers. A strong genetic structure was detected, allowing the definition of three genetic subunits. Subunits showed a good geographic coherence. Accordingly, distant metallicolous populations generally belonged to distinct subunits. Approximate Bayesian computation analysis of demographic scenarios among subunits further supported a primary isolation of populations from the southern Massif Central prior to last glacial maximum, whereas northern populations may have derived during postglacial recolonization events. Estimated divergence times among subunits were rather recent in comparison with the species history, but certainly before the establishment of anthropogenic metalliferous sites. Our results suggest that the large‐scale genetic structure of N. caerulescens populations pre‐existed to the local adaptation to metalliferous sites. The population structure of quantitative variation for metal‐related adaptive traits must have established independently in isolated gene pools. However, features of the most divergent genetic unit (e.g. extreme levels of Cd accumulation observed in previous studies) question the putative relationships between adaptive evolution of metal‐related traits and subunits isolation. Finally, admixture signals among distant metallicolous populations suggest a putative role of human activities in facilitating long‐distance genetic exchanges.  相似文献   

5.
The genetic diversity and population structure of a population of African lions in Hwange National Park, Zimbabwe, was studied using 17 microsatellite loci. Spatial genetic analysis using Bayesian methods suggested a weak genetic structure within the population and high levels of gene flow across the study area. We were able to identify a few individuals with aberrant or admixed ancestry, which we interpreted as either immigrants or as descendants thereof. This, together with relatively high genetic diversity, suggests that immigrants from beyond the study area have influenced the genetic structure within the park. We suggest that the levels of genetic diversity and the observed weak structure are indicative of the large and viable Okavango-Hwange population of which our study population is a part. Genetic patterns can also be attributed to still existing high levels of habitat connectivity between protected areas. Given expected increases in human populations and anthropogenic impacts, efforts to identify and maintain existing movement corridors between regional lion populations will be important in retaining the high genetic diversity status of this population. Our results show that understanding existing levels of genetic diversity and genetic connectivity has implications, not only for this lion population, but also for managing large wild populations of carnivores.  相似文献   

6.
In the interaction between two ecologically-associated species, the population structure of one species may affect the population structure of the other. Here, we examine the population structures of the aphid Metopeurum fuscoviride, a specialist on tansy Tanacetum vulgare, and its specialist primary hymenopterous parasitoid Lysiphlebus hirticornis, both of which are characterized by multivoltine life histories and a classic metapopulation structure. Samples of the aphid host and the parasitoid were collected from eight sites in and around Jena, Germany, where both insect species co-occur, and then were genotyped using suites of polymorphic microsatellite markers. The host aphid was greatly differentiated in terms of its spatial population genetic patterning, while the parasitoid was, in comparison, only moderately differentiated. There was a positive Mantel test correlation between pairwise shared allele distance (DAS) of the host and parasitoid, i.e. if host subpopulation samples were more similar between two particular sites, so were the parasitoid subpopulation samples. We argue that while the differences in the levels of genetic differentiation are due to the differences in the biology of the species, the correlations between host and parasitoid are indicative of dependence of the parasitoid population structure on that of its aphid host. The parasitoid is genetically tracking behind the aphid host, as can be expected in a classic metapopulation structure where host persistence depends on a delay between host and parasitoid colonization of the patch. The results may also have relevance to the Red Queen hypothesis, whereupon in the 'arms race' between parasitoid and its host, the latter 'attempts' to evolve away from the former.  相似文献   

7.
We studied five populations of a rainforest understory insectivorous bird (Myrmeciza exsul, chestnut-backed antbird) in a fragmented landscape in northeastern Costa Rica in order to test hypotheses about the influence of forest fragmentation on population genetic structure using 16 microsatellite loci. Bayesian assignment approaches—perhaps the most conservative analyses we performed—consistently grouped the sites into two distinct groups, with all individuals from the smallest and most isolated population clustering separately from the other four sites. Additional analyses revealed (1) overall significant genetic structure; (2) a pattern of population differentiation consistent with a hypothesis of isolation by resistance (landscape connectivity), but not distance; and (3) relatively short dispersal distances indicated by elevated mean pairwise relatedness in several of the sites. Our results are somewhat surprising given the small geographic distances between sites (11–34?km) and the short time (~60?years) since wide-spread deforestation in this landscape. We suspect fine-scale genetic structure may occur in many resident tropical bird species, and in the case of the chestnut-backed antbird it appears that anthropogenic habitat fragmentation has important population genetic implications. It appears that chestnut-backed antbirds may persist in fragmented landscapes in the absence of significant migration among patches, but mechanisms that allow this species to persist when many other similar species do not are not well understood.  相似文献   

8.
The Tropical Andes is a diversity hotspot for plants, but there is a scant knowledge about patterns of genetic variation within its constituent species. Phaedranassa tunguraguae is an IUCN endangered plant species endemic to a single valley in the Ecuadorian Andes. We estimate the levels of genetic differentiation across the geographic distribution of P. tunguraguae using 12 microsatellite loci. We discuss factors that might influence the genetic structure of this species. Genetic distance was used to evaluate relationship among populations and geographic patterns. Bayesian methods were used to investigate population structure, migration, evidence of recent bottlenecks, and time of divergence. The 7 populations form 2 genetic clusters. These clusters show highly significant differentiation between them, along with isolation by distance. Allele richness decreases from the most diverse westernmost population to the least diverse easternmost population. The species overall shows an excess of homozygotes, with highest levels of inbreeding in the easternmost population. We found evidence of recent bottleneck events. Migration rates were in general low but were higher between populations within each of the clusters. Time of divergence between populations was related to historical volcanic activity in the area. Based on our results, we propose 2 management units for P. tunguraguae.  相似文献   

9.
The population genetics of aquatic animals in the Florida Everglades may be strongly influenced by extinction and colonization dynamics. We combined analyses of allozyme and microsatellite loci to test the hypothesis that two levels of population structure are present for spotted sunfish (Pisces: Centrarchidae: Lepomis punctatus) inhabiting the Everglades. We hypothesized that annual cycles of marsh dry-down increase local-scale genetic variation through a process of local extinction and colonization; we hypothesized that barriers to gene flow by levee/canal systems create a second, regional level of genetic variation. In 1996 and 1997, we sampled spotted sunfish from 11 Everglades sites that were distributed in three regions separated by levees. We documented patterns of genetic variation at 7 polymorphic allozyme loci and 5 polymorphic microsatellite loci. Most genetic variation was present among local populations, according to both types of genetic markers. Furthermore, samples from marsh sites were heterogeneous, while those from canals were not. These data supported our hypothesis that dry-down events and local population dynamics in the marsh have a significant effect on population genetic structure of spotted sunfish. We found no support for our hypothesis that water-management structures superimpose a second level of genetic structure on this species, possibly because canals obscure historical structure by facilitating gene flow or because the complete canal system has been in place for fewer than 20 generations of this species. Our data suggests a continent-island (canal-marsh) structure of populations with high gene flow among regions and recurrent mixing in marshes from canal and creek habitats.  相似文献   

10.
We examined the impact of recent anthropogenic habitat fragmentation on the genetic structure of wood frog (Rana sylvatica) breeding sites in Wellington County of Ontario, Canada. In addition to geographic distance (average pairwise distance ~22 km, greatest distance ~50.22 km), four landscape features hypothesized to contribute to genetic differentiation between breeding sites were considered: road density, a major highway (highway 401), canopy cover, and watershed discontinuity. Analysis of data from 396 samples across nine breeding sites using eight microsatellite DNA loci, revealed a small degree of significant genetic structure between breeding sites. The presence of highway 401 and road density were correlated with small but statistically significant structure observed between several groups of sites. One outlier breeding site outside of Wellington County located within the city of Toronto, had significantly lower allelic richness and much larger population differentiation with the Wellington sites. Our data suggest that recent fragmentation has had an effect on wood frog population structure and also demonstrate the importance of dispersal for this species in maintaining levels of genetic diversity.  相似文献   

11.
We examined genetic differentiation among eight local populations of a metapopulation of Magnolia stellata using 10 nuclear and three chloroplast microsatellite (nSSR and cpSSR) markers and evaluated the influence of historical gene flow on population differentiation. The coefficient of genetic differentiation among populations for nSSR (F(ST) = 0.053) was less than half that for cpSSR (0.137). An isolation-by-distance pattern was detected for nSSRs, but not cpSSRs. These results suggest that pollen flow, as well as seed dispersal, has significantly reduced genetic differentiation among populations. We also examined patterns of contemporary pollen flow by paternity analysis of seeds from nine seed parents in one of the populations using the nSSR markers and found it to be greatly restricted by the distance between parents. Although most pollen flow occurred within the population, pollen flow from outside the population accounted for 2.5% of the total. When historical and contemporary pollen flows among populations were compared, the levels of pollen flow seem to have declined recently. We conclude that to conserve M. stellata, it is important to preserve the whole population by maintaining its metapopulation structure and the gene flow among its populations.  相似文献   

12.
Wan X  Nardi F  Zhang B  Liu Y 《PloS one》2011,6(10):e25238
The oriental fruit fly, Bactrocera dorsalis, expanded throughout mainland China in the last century to become one of the most serious pests in the area, yet information on this process are fragmentary. Three mitochondrial genes (nad1, cytb and nad5) were used to infer the genetic diversity, population structure and demographic history of the oriental fruit fly from its entire distribution range in China. High levels of genetic diversity, as well as a significant correspondence between genetic and geographic distances, suggest that the invasion process might have been gradual, with no associated genetic bottlenecks. Three population groups could be identified, nevertheless the overall genetic structure was weak. The effective number of migrants between populations, estimated using the coalescent method, suggested asymmetric gene flow from the costal region of Guangdong to most inland regions. The demographic analysis indicates the oriental fruit fly underwent a recent population expansion in the Central China. We suggest the species originated in the costal region facing the South China Sea and gradually expanded to colonize mainland China, expanding here to high population numbers.  相似文献   

13.
Twenty-one to 58 individual Necator americanus were sampled from each of four villages in south-western China. Each nematode was sequenced for 588 bp of the mitochondrial cytochrome oxidase I gene. Allelic and nucleotide diversity varied two-fold among villages. Overall FST among populations was approximately 0.28, but this large value resulted from one low-diversity population that had a large genetic distance to the other three populations (F(ST) = 0.10 without that population). There was no correlation between geographical and genetic distance among sites. Thus, the genetic structure of this species in China may be characterized by variable effective sizes and uneven movement among sites. We discuss the implications of this genetic structure for vaccine development and the spread of drug resistance in human hookworms, and compare the genetic structure of hookworms with that of other nematodes.  相似文献   

14.
We analyzed the levels of genetic variability in a long-distance migratory reed warbler, the Marsh Warbler Acrocephalus palustris, by using nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I gene (COI; 611 nucleotides [nt]). We obtained sequences from 229 individuals from ten sampling sites that include breeding, wintering, and migrating birds. Overall, 44 haplotypes were detected, which reflect high levels of genetic variation in this species, but most of this variation corresponds to individual differences within collecting sites. We also analyzed 829 nt of cytochrome b (cyt b) from 49 selected individuals of different sampling sites to evaluate the reliability of the COI results. Our analyses based on both mtDNA loci could not detect any population subdivision or phylogeographic structure, indicating high levels of gene flow between breeding sites (Nm?=?13.69). The split between the Marsh Warbler and its sister species, the Eurasian Reed Warbler Acrocephalus scirpaceus, could be dated for the Lower Pliocene (about 3.8 million years ago). The time to the most recent common ancestor (TMRCA) among Marsh Warbler haplotypes was estimated as 0.45 million years, indicating their bottleneck during the last glacial periods. Low nucleotide diversity, a shallow phylogenetic tree, a star-like haplotype network, and a unimodal mismatch distribution point to a sudden increase of the effective population size (probably after the last glaciation period) and a recent range expansion likely from a single refuge.  相似文献   

15.
The Cape buffalo (Syncerus caffer caffer) is one of the dominant and most widespread herbivores in sub‐Saharan Africa. High levels of genetic diversity and exceptionally low levels of population differentiation have been found in the Cape buffalo compared to other African savannah ungulates. Patterns of genetic variation reveal large effective population sizes and indicate that Cape buffalos have historically been interbreeding across considerable distances. Throughout much of its range, the Cape buffalo is now largely confined to protected areas due to habitat fragmentation and increasing human population densities, possibly resulting in genetic erosion. Ten buffalo populations in Kenya and Uganda were examined using seventeen microsatellite markers to assess the regional genetic structure and the effect of protected area size on measures of genetic diversity. Two nested levels of genetic structure were identified: a higher level partitioning populations into two clusters separated by the Victoria Nile and a lower level distinguishing seven genetic clusters, each defined by one or two study populations. Although relatively small geographic distances separate most of the study populations, the level of genetic differentiation found here is comparable to that among pan‐African populations. Overall, correlations between conservancy area and indices of genetic diversity suggest buffalo populations inhabiting small parks are showing signs of genetic erosion, stressing the need for more active management of such populations. Our findings raise concerns about the future of other African savannah ungulates with lower population sizes and inferior dispersal capabilities compared with the buffalo.  相似文献   

16.
We present the first population genetics study of the calcifying coralline alga and ecosystem engineer Corallina officinalis. Eleven novel SNP markers were developed and tested using Kompetitive Allele Specific PCR (KASP) genotyping to assess the population structure based on five sites around the NE Atlantic (Iceland, three UK sites and Spain), spanning a wide latitudinal range of the species’ distribution. We examined population genetic patterns over the region using discriminate analysis of principal components (DAPC). All populations showed significant genetic differentiation, with a marginally insignificant pattern of isolation by distance (IBD) identified. The Icelandic population was most isolated, but still had genotypes in common with the population in Spain. The SNP markers presented here provide useful tools to assess the population connectivity of C. officinalis. This study is amongst the first to use SNPs on macroalgae and represents a significant step towards understanding the population structure of a widespread, habitat-forming coralline alga in the NE Atlantic.  相似文献   

17.
Lemurs are among the world's most threatened mammals. The critically endangered black‐and‐white ruffed lemur (Varecia variegata), in particular, has recently experienced rapid population declines due to habitat loss, ecological sensitivities to habitat degradation, and extensive human hunting pressure. Despite this, a recent study indicates that ruffed lemurs retain among the highest levels of genetic diversity for primates. Identifying how this diversity is apportioned and whether gene flow is maintained among remnant populations will help to diagnose and target conservation priorities. We sampled 209 individuals from 19 sites throughout the remaining V. variegata range. We used 10 polymorphic microsatellite loci and ~550 bp of mtDNA sequence data to evaluate genetic structure and population dynamics, including dispersal patterns and recent population declines. Bayesian cluster analyses identified two distinct genetic clusters, which optimally partitioned data into populations occurring on either side of the Mangoro River. Localities north of the Mangoro were characterized by greater genetic diversity, greater gene flow (lower genetic differentiation) and higher mtDNA haplotype and nucleotide diversity than those in the south. Despite this, genetic differentiation across all sites was high, as indicated by high average FST (0.247) and ΦST (0.544), and followed a pattern of isolation‐by‐distance. We use these results to suggest future conservation strategies that include an effort to maintain genetic diversity in the north and restore connectivity in the south. We also note the discordance between patterns of genetic differentiation and current subspecies taxonomy, and encourage a re‐evaluation of conservation management units moving forward.  相似文献   

18.
Mutikainen P  Koskela T 《Heredity》2002,89(4):318-324
Characterization of host and parasite population genetic structure and estimation of gene flow among populations are essential for the understanding of parasite local adaptation and coevolutionary interactions between hosts and parasites. We examined two aspects of population structure in a parasitic plant, the greater dodder (Cuscuta europaea) and its host plant, the stinging nettle (Urtica dioica), using allozyme data from 12 host and eight parasite populations. First, we examined whether hosts exposed to parasitism in the past contain higher levels of genetic variation. Second, we examined whether host and parasite populations differ in terms of population structure and if their population structures are correlated. There was no evidence that host populations differed in terms of gene diversity or heterozygosity according to their history of parasitism. Host populations were genetically more differentiated (F(ST) = 0.032) than parasite populations (F(ST) = 0.009). Based on these F(ST) values, gene flow was high for both host and parasite. Such high levels of gene flow could counteract selection for local adaptation of the parasite. We found no significant correlation between geographic and genetic distance (estimated as pairwise F(ST)), either for the host or for the parasite. Furthermore, host and parasite genetic distance matrices were uncorrelated, suggesting that sites with genetically similar host populations are unlikely to have genetically similar parasite populations.  相似文献   

19.
The isolated and fragmented populations are highly susceptible to stochastic events, increasing the extinction risk because of the decline in putative adaptive potential and individual fitness. The population has high heterozygosity values and a moderate allelic diversity, the heterozygosity values are higher than in most other Crotalus species and snake studies. Possibly these high levels of genetic diversity can be related to a large founder size, high effective population size, multiple paternity and overlapping generations. We did not find the genetic structuring but the effective number of alleles \((N_{\mathrm{e}})\) was 138.1. We found evidence of bottlenecks and the majority of rattlesnakes were unrelated, despite the small sample size, endemic status, the isolated and fragmented habitat. The genetic information provided in this study can be useful as a first approach to try to make informed conservation efforts for this species and also, important to preserve the habitat of this species; the endangered Abies–Pinus forest of the Nevado the Toluca Volcano.  相似文献   

20.
Landscape genetic approaches offer the promise of increasing our understanding of the influence of habitat features on genetic structure. We assessed the genetic diversity of the endangered golden-cheeked warbler (Dendroica chrysoparia) across their breeding range in central Texas and evaluated the role of habitat loss and fragmentation in shaping the population structure of the species. We determined genotypes across nine microsatellite loci of 109 individuals from seven sites representing the major breeding concentrations of the species. No evidence of a recent population bottleneck was found. Differences in allele frequencies were highly significant among sites. The sampled sites do not appear to represent isolated lineages requiring protection as separate management units, although the amount of current gene flow is insufficient to prevent genetic differentiation. Measures of genetic differentiation were negatively associated with habitat connectivity and the percentage of forest cover between sites, and positively associated with geographic distance and the percentage of agricultural land between sites. The northernmost site was the most genetically differentiated and was isolated from other sites by agricultural lands. Fragmentation of breeding habitat may represent barriers to dispersal of birds which would pose no barrier to movement during other activities such as migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号