首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hong  Guofan 《Plant molecular biology》1997,35(1-2):129-133
A rapid and accurate strategy for rice contig map construction was described. Rice BAC library with average insert of 120 kb in length was used as building materials in contig mapping. The contigs of varied lengths ranging from 500 kb to several megabases with sufficient redundancy to ensure the accuracy of the joining between individual BACs were formed by fingerprinting. The contigs were then assigned to and ordered along the chromosomes by various molecular markers through their hybridization against the whole rice genomic library. The accuracy of clone overlaps in contig was further confirmed by the existence in contigs of well fit stacks of marker-lodged clones. He contigs thus obtained covered nearly the rice genome.  相似文献   

2.
A first generation clone-based physical map for the bovine genome was constructed combining, fluorescent double digestion fingerprinting and sequence tagged site (STS) marker screening. The BAC clones were selected from an Inra BAC library (105 984 clones) and a part of the CHORI-240 BAC library (26 500 clones). The contigs were anchored using the screening information for a total of 1303 markers (451 microsatellites, 471 genes, 127 EST, and 254 BAC ends). The final map, which consists of 6615 contigs assembled from 100 923 clones, will be a valuable tool for genomic research in ruminants, including targeted marker production, positional cloning or targeted sequencing of regions of specific interest.  相似文献   

3.
4.
A cosmid contig physical map of human chromosome 16 has been developed by repetitive sequence finger-printing of approximately 4000 cosmid clones obtained from a chromosome 16-specific cosmid library. The arrangement of clones in contigs is determined by (1) estimating cosmid length and determining the likelihoods for all possible pairwise clone overlaps, using the fingerprint data, and (2) using an optimization technique to fit contig maps to these estimates. Two important questions concerning this contig map are how much of chromosome 16 is covered and how accurate are the assembled contigs. Both questions can be addressed by hybridization of single-copy sequence probes to gridded arrays of the cosmids. All of the fingerprinted clones have been arrayed on nylon membranes so that any region of interest can be identified by hybridization. The hybridization experiments indicate that approximately 84% of the euchromatic arms of chromosome 16 are covered by contigs and singleton cosmids. Both grid hybridization (26 contigs) and pulsed-field gel electrophoresis experiments (11 contigs) confirmed the assembled contigs, indicating that false positive overlaps occur infrequently in the present map. Furthermore, regional localization of 93 contigs and singleton cosmids to a somatic cell hybrid mapping panel indicates that there is no bias in the coverage of the euchromatic arms.  相似文献   

5.
As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the few such maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2802 contigs, was constructed from fingerprinted bacterial artificial chromosome (BAC) clones. The map represents approximately 9.4-fold coverage of the Populus genome, which has been estimated from the genome sequence assembly to be 485 ± 10 Mb in size. BAC ends were sequenced to assist long-range assembly of whole-genome shotgun sequence scaffolds and to anchor the physical map to the genome sequence. Simple sequence repeat-based markers were derived from the end sequences and used to initiate integration of the BAC and genetic maps. A total of 2411 physical map contigs, representing 97% of all clones assigned to contigs, were aligned to the sequence assembly (JGI Populus trichocarpa , version 1.0). These alignments represent a total coverage of 384 Mb (79%) of the entire poplar sequence assembly and 295 Mb (96%) of linkage group sequence assemblies. A striking result of the physical map contig alignments to the sequence assembly was the co-localization of multiple contigs across numerous regions of the 19 linkage groups. Targeted sequencing of BAC clones and genetic analysis in a small number of representative regions showed that these co-aligning contigs represent distinct haplotypes in the heterozygous individual sequenced, and revealed the nature of these haplotype sequence differences.  相似文献   

6.
We have constructed a physical map of Arabidopsis thaliana chromosome3 by ordering the clones from CIC YAC, P1, TAC and BAC librariesusing the sequences of a variety of genetic and EST markersand terminal sequences of clones. The markers used were 112DNA markers, 145 YAC end sequences, and 156 end sequences ofP1, TAC and BAC clones. The entire genome of chromosome 3, exceptfor the centromeric and telomeric regions, was covered by twolarge contigs, 13.6 Mb and 9.2 Mb long. This physical map willfacilitate map-based cloning experiments as well as genome sequencingof chromosome 3. The map and end sequence information are availableon the KAOS (Kazusa Arabidopsis data Opening Site) web siteat http://www.kazusa.or.jp/arabi/.  相似文献   

7.
An integrated large-insert clone map of the region Xq11-q12 is presented. A physical map containing markers within a few hundred kilobases of the centromeric locus DXZ1 to DXS1125 spans nearly 5 Mb in two contigs separated by a gap estimated to be approximately 100-250 kb. The contigs combine 75 yeast artificial chromosome clones, 12 bacterial artificial chromosome clones, and 17 P1-derived artificial chromosome clones with 81 STS or EST markers. Overall marker density across this region is approximately 1 STS/60 kb. Mapped within the contigs are 12 ESTs as well as 5 known genes, moesin (MSN), hephaestin (HEPH), androgen receptor (AR), oligophrenin-1 (OPHN1), and Eph ligand-2 (EPLG2). Orientation of the contigs on the X chromosome, as well as marker order within the contigs, was unambiguously determined by reference to a number of X chromosome breakpoints. In addition, the distal contig spans deletions from chromosomes of three patients exhibiting either complete androgen insensitivity (CAI) or a contiguous gene syndrome that includes CAI, impaired vision, and mental retardation.  相似文献   

8.
I Ashikawa  N Kurata  S Saji  Y Umehara  T Sasaki 《Génome》1999,42(2):330-337
To refine the current physical map of rice, we have established a restriction fragment fingerprinting method for identifying overlap between pairs of rice yeast artificial chromosome (YAC) clones and defining the physical arrangement of YACs within contiguous fragments (contigs). In this method, Southern blots of rice YAC DNAs digested with a restriction endonuclease are probed with a rice microsatellite probe, (GGC)5. The probe produces a unique fingerprint profile characteristic of each YAC clone. The profile is then digitized, processed in a computer, and a statistic that represents the degree of overlap between two YACs is calculated. The statistics have been used to detect overlaps among YAC clones, thereby filling a gap between two neighbouring contigs and organizing overlapping rice YAC clones into contiguous fragments. We applied this method to rearranging YACs that had previously been assigned to rice chromosome 6 by anchoring with RFLP markers.  相似文献   

9.
Recent advances in both clone fingerprinting and draft sequencing technology have made it increasingly common for species to have a bacterial artificial clone (BAC) fingerprint map, BAC end sequences (BESs) and draft genomic sequence. The FPC (fingerprinted contigs) software package contains three modules that maximize the value of these resources. The BSS (blast some sequence) module provides a way to easily view the results of aligning draft sequence to the BESs, and integrates the results with the following two modules. The MTP (minimal tiling path) module uses sequence and fingerprints to determine a minimal tiling path of clones. The DSI (draft sequence integration) module aligns draft sequences to FPC contigs, displays them alongside the contigs and identifies potential discrepancies; the alignment can be based on either individual BES alignments to the draft, or on the locations of BESs that have been assembled into the draft. FPC also supports high-throughput fingerprint map generation as its time-intensive functions have been parallelized for Unix-based desktops or servers with multiple CPUs. Simulation results are provided for the MTP, DSI and parallelization. These features are in the FPC V9.3 software package, which is freely available.  相似文献   

10.
Physical mapping of the rice genome with YAC clones   总被引:6,自引:0,他引:6  
Construction of a rice physical map covered by YAC clones which have been arranged over half of the genome length is presented here. A total of 1285 RFLP and RAPD markers almost evenly distributed on the rice genetic map could select 2974 YAC clones and 2443 clones of them were located on their original positions. Rice YACs carrying 350 kb average insert fragments of 2443 clones could cover 222 megabase length of the rice genome, corresponding to 52% of the whole genome size (4.3 Mb). Chromosome landing with many YAC clones on the high-density genetic map loci efficiently integrated the genetic map with a physical map. This is the first step to generate a comprehensive genome map of rice. An integrated genome map should be an indispensable tool to figure out genome structure as well as to clone trait genes by map-based cloning.  相似文献   

11.
Construction of a BAC contig containing the xa5 locus in rice   总被引:9,自引:0,他引:9  
 The recessive gene xa5 confers resistance to bacterial blight in rice. To generate a physical map of the xa5 locus, three RFLP markers RG556, RG207 and RZ390, closely linked to xa5, were used to screen a rice bacterial artificial chromosome (BAC) library. The identified overlapping BAC clones formed two small contigs which were extended to both sides by chromosome walking. The final physical map consisted of 14 BAC clones and covered 550 kb. Genetic analysis with an F2 population showed that two RFLP markers 28N22R and 40F20R, derived from the BAC clones in the contig, flanked the xa5 locus. To further delimit the location of the xa5 locus, RFLP markers RG556 and RG207 were converted to sequence tagged sites and used to perform genetic analysis. The results indicated that the xa5 locus was most likely located between RG207 and RG556. Among the BAC clones in the contig, one clone, 44B4, hybridized to both RG207 and RG556. This suggests that BAC clone 44B4 carried the xa5 locus. Received: 12 January 1998 / Accepted: 27 May 1998  相似文献   

12.
13.
A bacterial artificial chromosome (BAC) library was constructed from high-molecular-weight DNA isolated from young leaves of papaya (Carica papaya L.). This BAC library consists of 39168 clones from two separate ligation reactions. The average insert size of the library is 132 kb; 96.5% of the 18700 clones from the first ligation contained inserts that averaged 86 kb in size, 95.7% of the 20468 clones from the second ligation contained inserts that averaged 174 kb in size. Two sorghum chloroplast probes hybridized separately to the library and revealed a total of 504 chloroplast clones or 1.4% of the library. The entire BAC library was estimated to provide 13.7× papaya-genome equivalents, excluding the false-positive and chloroplast clones. High-density filters were made containing 94% or 36864 clones of the library with 12.7× papaya-genome equivalents. Eleven papaya-cDNA and ten Arabidopsis-cDNA probes detected an average of 22.8 BACs per probe in the library. Because of its relatively small genome (372 Mbp/1 C) and its ability to produce ripe fruit 9 to 15 months after planting, papaya shows promise as a model plant for studying genes that affect fruiting characters. A rapid approach to locating fruit-controlling genes will be to assemble a physical map based on BAC contigs to which ESTs have hybridized. A physical map of the papaya genome will significantly enhance our capacity to clone and manipulate genes of economic importance. Received: 11 April 2000 / Accepted: 28 July 2000  相似文献   

14.
A fine physical map of Arabidopsis thaliana chromosome 5 wasconstructed by ordering the clones from YAC, P1, TAC and BAClibraries of the genome using the sequences of a variety ofgenetic and EST markers and terminal sequences of clones. Themarkers used were 88 genetic markers, 13 EST markers, 87 YACend probes, 100 YAC subclone end probes, and 390 end probesof P1, TAC and BAC clones. The entire genome of chromosome 5,except for the centromeric and telomeric regions, was coveredby two large contigs 11.6 Mb and 14.2 Mb long separated by thecentromeric region. The minimum tiling path of the chromosomewas constituted by a total of 430 P1, TAC and BAC clones. Themap information is available at the Web site http://www.kazusa.or.jp/arabi/.  相似文献   

15.
Yeast artificial chromosome (YAC) clones were arranged on thepositions of restriction fragment length polymorphism (RFLP)and sequence-tagged site (STS) markers already mapped on thehigh-resolution genetic maps of rice chromosomes 3 and 11. Froma total of 416 and 242 YAC clones selected by colony/Southernhybridization and polymerase chain reaction (PCR) analysis,238 and 135 YAC clones were located on chromosomes 3 and 11,respectively. For chromosomes 3 and 11, 24 YAC contigs and islandswith total coverage of about 46% and 12 contigs and islandswith coverage of about 40%, respectively, were assigned. Althoughmany DNA fragments of multiple copy marker sequences could notbe mapped to their original locations on the genetic map bySouthern hybridization because of a lack of RFLP, the physicalmapping of YAC clones could often assign specific locationsof such multiple copy sequences on the genome. The informationprovided here on contig formation and similar sequence distributionrevealed by ordering YAC clones will help to unravel the genomeorganization of rice as well as being useful in isolation ofgenes by map-based cloning.  相似文献   

16.
《BMC genomics》2015,16(1)

Background

A complete genome sequence is an essential tool for the genetic improvement of wheat. Because the wheat genome is large, highly repetitive and complex due to its allohexaploid nature, the International Wheat Genome Sequencing Consortium (IWGSC) chose a strategy that involves constructing bacterial artificial chromosome (BAC)-based physical maps of individual chromosomes and performing BAC-by-BAC sequencing. Here, we report the construction of a physical map of chromosome 6B with the goal of revealing the structural features of the third largest chromosome in wheat.

Results

We assembled 689 informative BAC contigs (hereafter reffered to as contigs) representing 91 % of the entire physical length of wheat chromosome 6B. The contigs were integrated into a radiation hybrid (RH) map of chromosome 6B, with one linkage group consisting of 448 loci with 653 markers. The order and direction of 480 contigs, corresponding to 87 % of the total length of 6B, were determined. We also characterized the contigs that contained a part of the nucleolus organizer region or centromere based on their positions on the RH map and the assembled BAC clone sequences. Analysis of the virtual gene order along 6B using the information collected for the integrated map revealed the presence of several chromosomal rearrangements, indicating evolutionary events that occurred on chromosome 6B.

Conclusions

We constructed a reliable physical map of chromosome 6B, enabling us to analyze its genomic structure and evolutionary progression. More importantly, the physical map should provide a high-quality and map-based reference sequence that will serve as a resource for wheat chromosome 6B.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1803-y) contains supplementary material, which is available to authorized users.  相似文献   

17.
Yeast artificial chromosome (YAC) clones were ordered for thephysical mapping of rice chromosome 2, the last of the 12 ricechromosomes to be assigned YACs by the Rice Genome ResearchProgram. A total of 128 restriction fragment length polymorphismmarkers and 4 sequence-tagged site (STS) markers located onour high-density genetic map were used for YAC clone landing.By colony/Southern hybridization and polymerase chain reactionscreening, a total of 239 individual YACs were selected fromour YAC library of 6934 clones covering six genome equivalents.The YACs located on the corresponding marker positions in thelinkage map formed 43 contigs and islands and were estimatedto encompass about 50% of the length of rice chromosome 2.  相似文献   

18.
To test the effectiveness of ordering shotgun DNA-templates prior to sequence analysis, the 450 kb left arm of yeast chromosome XII was randomly subcloned into a phagemid vector. Clones were ordered by hybridisation to an average map density of one new insert every 125 bp and are currently used for sequencing the chromosomal fragment. An 11.5 kb overlap between the template map and a DNA fragment that had been sequenced earlier allowed an independent evaluation of the strategy's effectiveness. To this end, clones were selected from the map and tag-sequenced from either end, thus comparing the map position with the actual location within the 11.5 kb. Of 65 selected clones, taken mostly at random from a total of 423, 58 mapped on average about a quarter of a clone length around their predicted position, with the other seven being between 0.6 and 1.5 clone length off. 75-86 sequencing reactions on clones selected from the map would have been sufficient for completely sequencing both strands of the 11.5 kb fragment. The results demonstrate the efficacy of such template sorting, considerably assisting sequencing at relatively little cost on the mapping level.  相似文献   

19.
Y L Chang  Q Tao  C Scheuring  K Ding  K Meksem  H B Zhang 《Genetics》2001,159(3):1231-1242
The genome of the model plant species Arabidopsis thaliana has recently been sequenced. To accelerate its current genome research, we developed a whole-genome, BAC/BIBAC-based, integrated physical, genetic, and sequence map of the A. thaliana ecotype Columbia. This new map was constructed from the clones of a new plant-transformation-competent BIBAC library and is integrated with the existing sequence map. The clones were restriction fingerprinted by DNA sequencing gel-based electrophoresis, assembled into contigs, and anchored to an existing genetic map. The map consists of 194 BAC/BIBAC contigs, spanning 126 Mb of the 130-Mb Arabidopsis genome. A total of 120 contigs, spanning 114 Mb, were anchored to the chromosomes of Arabidopsis. Accuracy of the integrated map was verified using the existing physical and sequence maps and numerous DNA markers. Integration of the new map with the sequence map has enabled gap closure of the sequence map and will facilitate functional analysis of the genome sequence. The method used here has been demonstrated to be sufficient for whole-genome physical mapping from large-insert random bacterial clones and thus is applicable to rapid development of whole-genome physical maps for other species.  相似文献   

20.
A bacterial artificial chromosome (BAC) library was constructed for the genome of the rhizosphere-inhabiting fluorescent pseudomonad Pseudomonas synxantha BG33R. Three thousand BAC clones with an average insert size of 140 kbp and representing a 70-fold genomic coverage were generated and arrayed onto nylon membranes. EcoRI fingerprint analysis of 986 BAC clones generated 23 contigs and 75 singletons. Hybridization analysis allowed us to order the 23 contigs and condense them into a single contig, yielding an estimated genome size of 5.1 Mb for P. synxantha BG33R. A minimum-tile path of 47 BACs was generated and end-sequenced. The genetic loci involved in ring nematode egg-kill factor production in BG33R Tn5 mutants, 246 (vgrG homolog), 1122 (sensor kinase homolog), 1233 (UDP-galactose epimerase homolog), 1397 (ferrisiderophore receptor homolog), and 1917 (ribosomal subunit protein homolog), have been mapped onto the minimum-tile BAC library. Two of the genetic regions that flank Tn5 insertions in BG33R egg-kill-negative mutants 1233 and 1397 are separated by a single BAC clone. Fragments isolated by ligation-mediated PCR of the Tn5 mutagenized regions of 29 randomly selected, non-egg-kill-related, insertion mutants have been anchored onto the ordered physical map of P. synxantha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号